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ABSTRACT
Autonomous vehicles and human drivers are prone to line-of-sight
limitations. Road-side mounted 3D sensors like LiDARs can aug-
ment a vehicle’s on-board perception. However, this entails fusing
3D frames at low latency and high accuracy. Road-side and vehicle
3D frames are captured from different viewpoints. This adversely
affects alignment accuracy and can be computationally expensive.
To this end, VRF optimizes for both latency and accuracy by de-
coupling the alignment process into indirect and direct alignments.
First, VRF indirectly aligns the 3D frames by aligning them to a
common reference point i.e., a vehicle’s on-board 3D map. Then,
it directly aligns the two point clouds to refine this alignment. To
ensure high accuracy, it incorporates novel offline registration and
alignment accuracy forecasting modules. To ensure low latency, it
uses a fast fusion pipeline that caches previous and offline com-
putations. To our knowledge, VRF is the first vehicle road-side
cooperative system to ensure cm-level accuracy and end-to-end la-
tency less than 20 ms. Most importantly, its latency is below the
100 ms threshold required for autonomous vehicles to react to ex-
ternal events. Finally, VRF can improve reaction time to external
events by as much as 5 seconds1.
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a) Red Light Violation b) Unprotected Left Turn

Figure 1: The red truck(s) block the gray vehicle’s view. It cannot see the
oncoming yellow cab violating the red light in (a) and taking the unprotected
left turn in (b).

(a) Vehicle Point Cloud

(b) Road-side Point Cloud (c) Fused Point Cloud

Occluded 
Area

Vehicle Detected after Fusion

Figure 2: By fusing the RSU point cloud with the vehicle point cloud, the
vehicle can see the red-light violator vehicle (Fig. 1a).

1 INTRODUCTION
The past decade has seen a significant infusion of technology in
vehicles. This includes blind spot monitoring [28], adaptive cruise
control [30], lane keep assist [29], and autonomous driving with
limited or no human intervention. Critical to these technologies is
the ability of the vehicle to understand its surroundings. For this, ve-
hicles use sensors like cameras, LiDARs, and RADARs to build 3D
representations of their surroundings. A LiDAR sends out millions
of light pulses multiple times per second. From the reflections of
these light pulses, a LiDAR builds a 3D point cloud (Fig. 2). This
point cloud consists of points defined by their 3D positions along
with other attributes like intensity and color. However, these sensors
are prone to occlusions and line-of-sight limitations (Fig. 2a).

Line-of-sight limitations are not only a problem for these sensors
but also for human drivers. The National Highway Transportation
and Safety Authority (NHTSA [43]) has identified several scenarios
in which occlusions can cause traffic accidents [42] (Fig. 1). In one
such scenario (Fig. 1a), the gray vehicle (equipped with a LiDAR)
will crash into the oncoming red-light violating vehicle (yellow cab)
because the red truck occludes its LiDAR’s view (Fig. 2a). If the gray
vehicle could see the oncoming vehicle, it would be able to avoid the
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traffic accident. One way to do this is to extend the vehicle’s sensor
range with road-side unit (RSU) sensors.

Well-positioned RSU LiDARs can monitor the entire intersection
and are less prone to occlusions (Fig. 2b). In such a scenario, the
RSU LiDARs share raw 3D point clouds with vehicles. Vehicles
fuse these point clouds with ones from their on-board sensors by
aligning them in their own coordinate system to overcome line-of-
sight limitations (Fig. 2c). Increasing RSU LiDAR [13, 26, 35, 45,
46, 55], 5G [1], and edge-compute deployments [61] are making this
possible. However, this is challenging because of the high accuracy
and low latency requirements of autonomous vehicles.

An autonomous driving pipeline reacts to its surroundings in three
steps i.e., perception, planning, and control. Perception understands
the scene and localizes the vehicle in it. Planning plans a trajectory
for the vehicle. Control follows that trajectory using low-level control
signals like steering, throttle, and brake. Industry standards require
that an autonomous vehicle runs its entire pipeline at least 10 times
per second with a 99th percentile latency less than 100 ms [11, 50].
In addition, these standards require that a vehicle localizes itself
and objects in its surroundings with cm-level accuracy [33]. This, in
turn, means that the RSU LiDAR point cloud must be fused with the
vehicle’s point cloud with high accuracy and low latency.

Aligning the vehicle and RSU point clouds is challenging be-
cause they are captured from very different viewpoints. As a result,
the overlapping region between the point clouds can be small, and
sparse (i.e., contain fewer 3D points). Alignment algorithms, how-
ever, require a large overlap between the point clouds. This makes
fusion challenging. To tackle this, our key insight is to de-couple the
alignment. Instead of aligning two point clouds directly with one
another, we align them to a common third point cloud with which
they share a large overlap i.e., a vehicle’s on-board 3D map. By
doing so, we can indirectly align the two point clouds.

A 3D map is a dense 3D point cloud of the environment, contain-
ing points belonging only to static objects (e.g., the road, sidewalk,
traffic-signs). Autonomous vehicles localize themselves by aligning
their LiDAR point clouds to a common on-board 3D map. This
technique is very well-established in the industry (Waymo [53],
Cruise [18], Zoox [67]) and in open-source autonomous driving
stacks (Autoware [41], Baidu Apollo [12]).

In our approach, both the vehicle and RSU LiDAR align them-
selves to the 3D map. Then, using their poses in the 3D map, the
vehicle transforms the RSU point cloud into its own view, thus indi-
rectly aligning them. This has three advantages. In terms of latency,
because the RSU LiDAR is stationary, we can align it with the 3D
map offline. In terms of accuracy, because the 3D map is captured
from a vehicle’s perspective, it has a larger, denser overlapping re-
gion with the vehicle. In terms of overlap, because we align the two
point clouds to a 3D map (not to each other), we can align them even
if they do not have a direct overlap between them. However, this is
not straightforward.
Challenges. Scan matching techniques like Normal Distribution
Transform (NDT [10]) and Iterative Closest Point (ICP [62]) can
accurately align a vehicle’s point cloud to a 3D map, but are not ef-
fective for point clouds captured from RSU LiDARs. This is because
they require an accurate coarse-grained alignment between the point
clouds, which standard technologies like GPS cannot provide. On

the other hand, feature-matching algorithms [49, 66] are not robust
to changes in viewpoints.

Even after aligning the RSU point cloud to the 3D map, the map
contains noise which can affect the fusion accuracy of the point
clouds from the RSU and the vehicle. An additional lightweight
direct alignment of RSU and vehicle point clouds can significantly
improve fusion accuracy in some cases. However, it is not possible to
determine accuracy without actually doing the fusion and comparing
it to ground truth.

Accurately fusing the point clouds through multiple alignment
operations comes at the cost of increased network and compute
latency. Transmitting raw RSU point clouds incurs network latency.
On the other hand, the vehicle must align itself to the 3D map,
receive the RSU point cloud through the network, and then run
a direct alignment with it. Combined, these operations can incur
significant compute latency.
Contributions. Our key design principle is to minimize online,
per-frame operations. For this, we run operations offline and re-use
computations from previous frames. In doing so, we build VRF
which makes the following contributions.

• To align RSU point clouds to the vehicle’s 3D map, we propose
an offline coarse-grained alignment algorithm that aligns the RSU
point cloud with the 3D map. We use this coarse-grained alignment
as input to a scan-matching algorithm to obtain a finer alignment.

• To decide whether to perform direct alignment, we propose an
alignment accuracy forecasting algorithm. This algorithm forecasts
if direct alignment will improve fusion accuracy. It uses the inter-
point density in the overlapping region between the two point clouds
to estimate the chances of a successful alignment.

• We propose a fast fusion software stack that re-uses computa-
tions from prior frames, leverages application-specific settings and
GPU offloading and uses careful pipelining to reduce end-to-end
fusion latency.

An end-to-end implementation of VRF can achieve 5 cm fusion
accuracy in 20 ms on modest hardware. Relative to prior work [25],
this is an order of magnitude improvement in both accuracy and
latency. To our knowledge, VRF is the first end-to-end system that
can enable autonomous vehicles to use raw fused 3D point clouds
and react to them within the 100 ms latency budget.

2 BACKGROUND AND MOTIVATION
Point Cloud Fusion. Point cloud fusion is a two-step process:
alignment and stitching. Given a point cloud Pr captured from a
RSU LiDAR and Pv captured from a vehicle LiDAR , the goal of
point cloud alignment is to find a rigid transformation T that aligns
Pr to Pv. The transformation T is a 4x4 matrix, consisting of a
rotation matrix R and a translation vector t. This transformation T ,
when applied to Pr, yields a transformed point cloud P

′
r in the same

coordinate system as Pv. Stitching simply appends P
′
r to Pv to obtain

a fused point cloud Pf that contains all the points from P
′
r and Pv.

Scan-matching. Broadly speaking, there are two types of alignment
algorithms2: feature-matching [49, 66] and scan-matching [10, 62].
Of these, scan-matching is more accurate but compute-intensive. ICP
(Iterative Closest Point [62]), a scan-matching technique, iteratively
computes a transformation matrix T that minimizes the 3D distance
2Prior literature uses alignment and registration interchangeably.
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Technique Error (cm) Latency (ms)

ICP ∞ 523
GO-ICP [58] ∞ 207

ICP with initial guess (GPS) 584 361
VRF 1.55 12.2

Table 1: Even with a reasonable initial guess, ICP and its variants cannot
accurately align vehicle and RSU point clouds and consume significant
latency. VRF, on the other hand, can align point clouds with cm-level
accuracy at low latency.

from every point in Pr to its nearest neighbor in Pv. To do this,
ICP requires both a large overlap between the two point clouds
and a coarse-grained alignment between them. This coarse-grained
alignment is an accurate initial guess of the transformation matrix
T . Since vehicle and RSU point clouds are captured from very
different viewpoints, they have low overlap. Hence, ICP cannot
align the two point clouds (Tbl. 1). Partial matching techniques
such as GO-ICP [58] are suitable for aligning dense point clouds
with significant overlap. However, in the context of vehicle RSU
point cloud fusion where the overlap is both small and sparse, they
fail to converge. Even while using GPS as an initial guess, the
alignment error3 is significant (584 cm). This is because GPS can
only estimate the LiDAR’s position, not orientation. Additionally,
ICP incurs significant latency. VRF, on the other hand, can register
point clouds within 2 cm in less than 15 ms.
Prior Work in RSU Vehicle Fusion. For faster and more accu-
rate vehicle RSU point cloud fusion, prior work has used feature-
based registration techniques that extract and match features across
point clouds. Doing so, these works have either optimized for accu-
racy [25], or latency [51], but not both (Tbl. 2). VI-Eye [25] extracts
and matches scene-specific features (e.g., road markings, and traf-
fic signs) from point clouds for alignment. With this, it achieves
decimeter-level accuracy (15 cm). However, the alignment latency,
not including the time to transmit the point clouds, is on the order of
100s of milliseconds. To reduce latency, VIPS [51] further processes
the point clouds to extract, and match vehicle bounding boxes. This
comes at the cost of accuracy (i.e., VIPS has accuracy on the order
of 28-44 cm). Moreover, both works require a significant amount of
overlap between the vehicle and RSU point clouds, without which
they cannot align them.
Early Vs Late Fusion. Early fusion approaches (VI-Eye [25]) trans-
mit, and fuse raw 3D point clouds. This enables generalization to
multiple downstream modules (e.g., localization, path-planning, and
drivable space detection) and can even help detect partially visible
objects. Fusing raw point clouds is relatively more accurate but can
incur significant compute and network latency. To this end, late
fusion approaches [15, 37, 51] process point clouds independently
at the vehicle/RSU and then transmit and fuse the processed infor-
mation. This reduces compute and network latency at the cost of
accuracy and generalizability. As such, VRF uses early fusion for
accuracy and generalizability, but we design it so that it ensures low
latency as well.
Requirements for RSU Fused Perception. An autonomous driving
stack must perceive, plan, and apply control signals to the vehicle at
least 10 times per second, with a 99-th percentile latency less than

3Alignment error is the difference between estimated transformation and ground truth
transformation. We define this formally in §4.1.

Strategy Overlap-agnostic Data Latency Accuracy

VI-Eye [25] ✘ Raw PC ✘ ✘
VIPS [51] ✘ Proc PC ✔ ✘

VRF ✔ Raw PC ✔ ✔

Table 2: A ✔ in the Overlap-agnostic means the strategy does not require
overlap between the vehicle and RSU and vice versa. Data refers to the
granularity of the shared data. Raw PC refers to raw point clouds, and Proc
PC refers to processed point clouds. A ✔ in Latency means the strategy’s
latency is within 100 ms. A ✔ in Accuracy means accuracy is within 10 cm.

Figure 3: VRF aligns the RSU (green) and vehicle (red) point clouds to
a pre-built 3D map (blue). This is a bird-eye view projection of VRF’s
deployment on a busy thoroughfare in the real world.

100 ms [11, 50]. As such, the RSU point cloud must be received
and fused at the vehicle at very low latency, allowing enough time
for the rest of the stack to process the fused point cloud. Moreover,
the fusion must be highly accurate (on the order of a few cm),
because downstream perception algorithms (e.g., localization, object
detection, tracking etc.) rely on the fused point cloud. Finally, in
most cases, the vehicle and RSU point clouds may not have a large
overlap. Thus, fusion must be overlap-agnostic, fast, and accurate.
As Tbl. 2 shows, prior work does not meet all three requirements.
Our Approach. To this end, we present VRF, an end-to-end sys-
tem that enables low latency point cloud fusion without sacrificing
accuracy, even when the two point clouds have little or no overlap.
As opposed to prior work that fuse the two point clouds directly,
our key insight in VRF is to de-couple the alignment into two steps.
More specifically, VRF aligns the vehicle and RSU point clouds
separately to a 3D map (Fig. 3). 3D maps are dense 3D point clouds
of the environment, captured from a vehicle’s viewpoint, and are
extensively used for localization [8] and path-planning [19] in au-
tonomous driving [12, 18, 41, 54, 67] 4. Once the two point clouds
are aligned to the 3D map, i.e., the transformation matrix for the
vehicle is Tv, and the RSU LiDAR is Tr, we can transform the RSU
point cloud to the vehicle’s coordinate frame as T−1

v ∗Tr ∗Pr, where
Pr is the RSU point cloud.
Advantages of VRF. Indirectly aligning the vehicle and RSU point
clouds to a 3D map has several advantages.

• Low latency. The RSU LiDAR is stationary, so VRF does not
need to align it to the 3D map every frame. Instead, it can do so
offline and re-use the transformation matrix.

• High accuracy. A 3D map is dense and has a large overlap with
both the RSU, and vehicle point cloud. Thus, VRF can register both
point clouds to the 3D map with high accuracy.

4These 3D maps are regularly updated to incorporate environmental changes [8] This is
orthogonal to the focus of our paper.
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Figure 4: An overview of VRF.

• Overlap-agnostic. VRF aligns the vehicle and RSU point
clouds to a 3D map. So, it can align the two point clouds even
if there is little or no overlap between them.
Challenges. To do this, VRF must address three challenges.

• Although aligning vehicle point clouds to the 3D map is rel-
atively easy (because they are captured from similar viewpoints),
aligning the RSU point cloud is challenging. To accurately align
the RSU point cloud, ICP requires an accurate initial guess of its
transformation matrix with respect to the 3D map. However, it is
not trivial to obtain this. Existing technologies and techniques (e.g.,
GPS, and FGR [66]) cannot provide an accurate initial guess.

• The 3D map indirectly aligns the vehicle and RSU point clouds,
but it can contain errors. These can be errors in the map itself, or
they can arise whilst aligning the vehicle and RSU point clouds to
the map. These errors are then propagated to the fused point cloud
and can affect downstream perception algorithms. We observe that,
in some cases, by directly aligning the vehicle and RSU point cloud
(running a few quick iterations of ICP), we can significantly reduce
these errors. However, in other cases, ICP can amplify these errors.
Hence, it is important for VRF to determine when to run ICP. This
is not trivial unless we know the ground truth.

• Even though VRF computes the transformation of the RSU
LiDAR offline, other operations can incur significant latency. This
includes the time to transmit the point cloud, localize the vehicle
in the 3D map, perform direct alignment, and fuse the point clouds.
This is undesirable. VRF must fuse the point clouds at low latency
without sacrificing accuracy.

3 VRF DESIGN
Overview. To understand how VRF works, consider a vehicle
passing through an intersection with an RSU mounted on a traffic
light post (Fig. 4). The vehicle and RSU are equipped with a LiDAR,
compute resources, and a wireless radio. In addition, they share a
common 3D map. The RSU shares raw point clouds with the vehicle,
which fuses them with its on-board point clouds to augment its
perception. Unlike prior region-based sharing works (EMP [64] and
Autocast [48]), VRF broadcasts the same RSU point cloud to all
vehicles. We assume the vehicle and the RSU share a common 3D
map of the area. This map is collected offline and does not contain
dynamic objects (e.g., vehicles, pedestrians).

Handshake. As the vehicle approaches the intersection, it ini-
tiates a handshake with the RSU to subscribe to its point clouds.
During the handshake, the RSU sends the vehicle a reference RSU
point cloud and the RSU LiDAR’s pose in the shared 3D map. The

reference RSU point cloud is a single frame from the RSU LiDAR
and does not contain dynamic objects. It can be captured during
RSU LiDAR installation. This handshake is relatively fast, and on
average, takes only 12 ms (§4.9).

The RSU is aligned to the 3D map offline (§3.1).
Online Operations. To save network bandwidth, every frame,

the RSU broadcasts the difference between the current point cloud
and the reference RSU point cloud (§3.3). The vehicle adds this
difference to the reference RSU point cloud that it received during
the handshake process to reconstruct the RSU point cloud for the
current frame. Simultaneously, the vehicle localizes in the 3D map
using NDT [10]. At this stage, both the vehicle and RSU are aligned
to the 3D map.

Directly aligning the two point clouds can further refine the align-
ment in some cases, and deteriorate it in others. To this end, VRF
uses an alignment accuracy forecaster (§3.2) to predict if direct align-
ment will improve alignment accuracy. Then, the vehicle transforms
the reconstructed RSU point cloud into its own coordinate system
and fuses it.

3.1 Offline Registration

The Problem. VRF’s key insight is to de-couple the alignment and
use two indirect alignments. That is, it fuses the RSU and vehicle
point clouds by aligning them with a 3D map. The RSU is stationary,
so VRF can align it with the 3D map offline and cache and re-use
the transformation. However, this is not trivial. Feature-matching
algorithms (SAC-IA [49], FGR [66]) are not robust to changes in
viewpoints. Scan-matching algorithms (ICP [62]) need an accurate
initial guess which is not straightforward to find. Although GPS can
give the rough 3D location of the RSU, it cannot estimate orientation.
We validate this in Tbl. 8.
Our Approach. VRF uses a novel algorithm that leverages plane
matching and trajectory matching to find an accurate initial guess for
the RSU’s pose in the 3D map. ICP uses this initial guess as input
to refine the alignment. The inputs to this algorithm (apart from the
RSU point cloud and the 3D map) are: a) the rough GPS location of
the RSU, and b) a short trajectory of the RSU installer’s vehicle in
both GPS coordinates and RSU LiDAR coordinates.

The rough GPS location need not be accurate (demonstrated in
§4.7). It can easily be obtained by pinpointing the location of the
RSU on a mapping service like Google Maps [3]. For the installer
vehicle’s trajectory, VRF only needs the vehicle’s position across a
small number of frames. The RSU installer vehicle’s GPS trajectory
can be obtained from an on-board smartphone. The trajectory of the
vehicle in the RSU LiDAR can also be easily obtained by tracking its
position across a small number of frames. This is a one-time process;
it can be done when installing the RSU. The output of this algorithm
is a 6-DoF pose of the RSU in the 3D map. VRF then feeds this
6-DoF transformation, along with the RSU point cloud and 3D map
to ICP, which further refines the alignment.

First, VRF converts the GPS location of the RSU to the 3D
map’s coordinate system using the Mercator projection [52]. This
determines the rough 2D location (x,y) of the RSU in the 3D map.
Then, VRF uses RANSAC [21], a plane-fitting algorithm, to find
the road surface in the RSU point cloud and the 3D map. RANSAC
detects multiple planes, but because the road surface is the largest
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(a) Misaligned trajectories (b) Aligned trajectories.

Figure 5: By aligning the vehicle’s trajectory in GPS (blue) and RSU LiDAR
coordinates (green), VRF computes the yaw angle.

plane, VRF can identify it. Running RANSAC on the entire 3D map
can be computationally expensive. So, VRF crops a square region
around the rough 2D location of the RSU (x,y). Each side of the
square region can be the maximum range of the RSU LiDAR e.g.,
120m for an Ouster-64 beam LiDAR [5]. VRF then runs RANSAC
on this cropped map to find the road surface.

Then, VRF determines the height of the road surface at the center
of the RSU point cloud (hr). It also computes the height of the road
surface in the 3D map at the rough 2D location of the RSU (hm).
Using these, VRF determines the z-coordinate of the RSU in the 3D
map (h) as h = hm −hr. With this, VRF has the rough 3D position
(x,y,z) of the RSU in the 3D map.

To find the pitch (β ) and roll (γ), VRF aligns the normal vectors
of the road surface in the RSU point cloud (−→nr ) and the cropped
map (−→nm). To find the yaw angle (α), VRF uses trajectory align-
ment. For this, VRF uses the trajectory of the vehicle in both GPS
coordinates and the RSU LiDAR coordinates. It first converts the
GPS coordinates of the vehicle to the 3D map’s coordinate system
using the Mercator projection. Then, VRF takes any two points of
the vehicle trajectory in the map and RSU’s point cloud. From these,
it then calculates the yaw angle (α) which aligns the two trajectories
(Fig. 5). Now, VRF has the three rotation angles of the RSU in the
3D map. VRF then combines Rα and Rβ ,γ to get the final rotation
matrix (Rα,β ,γ = Rα ·Rβ ,γ ).

VRF uses the 3D position and rotation angles to build a 6-DoF
transformation Tig of the RSU in the 3D map. Using this and the
RSU point cloud and 3D map, ICP refines this transformation and
outputs the final 6-DoF transformation Tr of the RSU in the 3D map.
Because this process is offline, VRF can run ICP for a large number
of iterations to get an accurate transformation. With this, VRF is
able to accurately align the RSU point cloud to the 3D map. Our
alignment is orders of magnitude better than simple GPS alignment
or feature matching (Tbl. 8).

3.2 Alignment Accuracy Forecaster
On the vehicle, at every frame, VRF aligns the vehicle’s point cloud
to the 3D map using NDT [10]. Like ICP, NDT is reasonably accurate
because (a) the overlap between the vehicle point cloud and the 3D
map is high, and (b) we use the vehicle’s pose from n−1 as an initial
guess for NDT in frame n. At this point, both the vehicle and RSU
point clouds are aligned to the 3D map, and indirectly to each other.
The Problem. The accuracy of this indirect alignment is dependent
on the 3D map. Errors in the 3D map (e.g., caused by changes in the
environment [8]) or the vehicle’s and RSU’s ability to align with it,
can propagate to the fused point cloud. To improve the alignment,
we can use an additional direct alignment step. In this, we align the
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vehicle and RSU point clouds using their relative positions in the
3D map as an initial guess. However, this does not always guarantee
improved alignment; it could worsen it in some cases as well.

To evaluate this, we drove a vehicle towards and away from the
RSU LiDAR while capturing point clouds. For these point clouds, we
evaluated VRF’s alignment error with and without direct alignment
on top of an indirect alignment (Fig. 6 plots error as a function
of distance). In cases with a large overlap and an accurate initial
guess, a direct alignment step (blue line) can significantly improve
alignment accuracy. In other cases, where overlap between the point
clouds is very low, it can reduce accuracy.
Key Insight. Given two point clouds, ICP iteratively finds the
transformation that minimizes the 3D distance from every point in
one point cloud to its closest point in the other point cloud. ICP’s
alignment accuracy depends on its ability to find and match the
closest points of one point cloud to another. This, in turn, depends
on a) the extent of overlap between the two point clouds, b) the point
densities in the region of overlap, and c) the accuracy of the initial
guess. The point density is the number of points per unit area for
a given point cloud. We observe that a large overlap and a high
point density in the overlapping region implies that ICP has a higher
chance of finding accurate neighboring points (hence more accurate
alignment), and vice versa.
Our Approach. With an analytical LiDAR model, given a LiDAR’s
parameters (e.g., channels, FoV, range etc.) and its transform, VRF
derives the 2D coordinates of every point the LiDAR’s beams will
hit on a flat surface. VRF uses this model to generate synthetic point
clouds for the vehicle and RSU LiDARs (red dots represent RSU
and blue dots represent vehicle point clouds in Fig. 7). Next, VRF
divides the synthetic RSU point cloud into a grid. For each grid cell,
VRF computes the inter-point density (IPD). IPD is the min of the
point density of the vehicle and RSU point clouds in that cell. We
use the min to ensure that IPD is not biased by the point density of
one of the point clouds. The left portion of Fig. 7 shows the IPD for
three cells. Using mean point density instead can be biased towards
a single point cloud, as the top two regions on the left of Fig. 7
indicate. Green cells in Fig. 7 represent regions with high IPD (i.e.,
above a minimum inter-point density δ pts/m2).

A higher IPD at a given cell means that direct alignment (ICP)
has a higher chance of finding accurate neighboring points in that
cell, and vice versa. Determining whether to run ICP based on a
single cell’s IPD is not robust. So, VRF considers IPD across the
entire grid. That is, for a given scenario, if many cells have high IPD,
it indicates a higher chance of accurate direct alignment, and vice
versa. Fig. 8 and Fig. 9 illustrate IPD distributions for accurate and
inaccurate direct alignments. Fig. 8 demonstrates a scenario when
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accurate direct alignment.

the vehicle and RSU are in proximity, hence a higher number of cells
with high IPD (shown in green). On the other hand, Fig. 9 shows a
scenario when the vehicle and RSU are far away, hence a low number
of cells with high IPD (shown in green). In our implementation of
VRF, if 10% of the cells have high IPD, we run direct alignment5.
Alternate Approach. Instead of using synthetic point clouds, we
could have used the actual point clouds, as they capture the envi-
ronment better. However, this incurs additional latency and is not
needed. We prove in §4.7 that even with synthetic point clouds we
get comparable accuracy.
Deployment Optimization. In practice, VRF will know the LiDAR
parameters of all RSU LiDARs for a given area, and the vehicle
LiDAR. Offline, for every RSU LiDAR, VRF will compute the
inter-point density for a wide range of distances and use that to
forecast whether direct alignment will help. The vehicle will store
these results as a lookup table. Then, given a RSU point cloud and
the vehicle’s transform in the 3D map, it uses the lookup table to
determine whether it should run direct alignment.

3.3 Fast Fusion Pipeline
The Problem. Although VRF runs RSU to 3D map alignment and
the alignment accuracy forecaster offline, it can still incur signifi-
cant latency for other operations. Without compromising accuracy,
VRF must fuse point clouds at low latency to give enough time for
downstream perception tasks to consume the fused point cloud. To
understand why VRF can be slow, we describe a strawman pipeline
for VRF (Fig. 10).

The vehicle node localizes the vehicle point cloud (Pv) in the 3D
map (Fig. 10: NDT). Then, it waits for the RSU point cloud (Pr).
The RSU compresses the RSU point cloud and sends it over the
wireless network to the vehicle (Fig. 10: Comp). The vehicle node
receives this and extracts the vehicle point cloud from it (Fig. 10: Ex-
tract). If needed, it runs an additional direct alignment step (Fig. 10:
ICP). Finally, the vehicle node fuses the two point clouds (Fig. 10:
Fusion). End-to-end, this pipeline can be slow. On modest hardware,
the average end-to-end latency for the strawman pipeline is 40 ms
whereas 99th percentile is 60 ms.
Our Approach. To fuse point clouds at low latency, without com-
promising on accuracy, VRF uses a set of optimizations (Fig. 11).
We describe these as follows.

Diff Clouds. 3D point clouds are voluminous and can exhaust a
wireless network’s bandwidth. For instance, raw point clouds from
an Ouster-64 LiDAR require a wireless bandwidth of as much as
480 Mbps. Instead of sending a raw point cloud, the RSU sends a

5Through exhaustive simulations with multiple LiDAR models, we find δ to be 1 pt/m2.
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Figure 10: Strawman pipeline for VRF.
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Figure 11: Optimized pipeline. Vehicle (red) and RSU (blue) ops.

diff cloud to the vehicle. A diff cloud is the difference between the
current RSU point cloud (PR), and the reference RSU point cloud
(PR−Re f ). The reference RSU point cloud is captured during the
RSU’s installation when there are no dynamic objects in the scene
(§3). At the RSU, VRF calculates the diff cloud by subtracting the
PR from the PR−Re f . To calculate the diff, VRF builds a double-
buffer Octree [27] that contains both RSU point clouds. Then, it
uses XOR operations to detect nodes that are different between
the point clouds. It stores the points from these nodes in a diff
cloud, compresses it and sends it over the wireless network. At the
vehicle, VRF decompresses and adds the diff cloud to the PR−Re f to
reconstruct PR (Fig. 11: Extract & Reconst).

Alignment with the Reference RSU Point Cloud. In the straw-
man pipeline (Fig. 10), ICP must wait for the vehicle to receive,
and reconstruct the RSU point cloud. Once that happens, then ICP
aligns it with the vehicle point cloud. VRF removes this bottleneck
by parallelizing ICP with wireless transmission of the RSU point
cloud. To do this, instead of waiting for the diff cloud, VRF aligns
the RSU’s reference point cloud (PR−Re f ) with the current vehicle
point cloud (PV ) (Fig. 11). Because the vehicle has already received
the RSU’s reference point cloud during the handshake, it can run
ICP as soon as a new vehicle point cloud is available. This way, ICP
computes the transformation matrix for the RSU reference point
cloud. Then, when the vehicle receives and reconstructs the RSU’s
current point cloud, it simply applies the RSU reference point cloud
transformation to it. We can use the RSU’s reference point cloud for
alignment because the RSU is stationary. Even though the vehicle
point cloud has dynamic objects, ICP can use common stationary
objects (e.g., roads, curbs, buildings, traffic signs, etc.) to compute
the transformation. Empirically, we observe from real-world and
synthetic traces, a significant portion of the vehicle point cloud is
made of stationary objects, even when driving in high traffic. With
this, VRF parallelizes alignment with the wireless transmission of
the diff cloud.

Initial Guess from Previous Frame. The direct alignment step
using ICP needs an initial guess to quickly converge to the correct
transformation. This initial guess is the transformation of the vehicle
and RSU in the 3D map. Because the RSU is stationary, VRF uses
its cached transformation as computed in §3.1. The vehicle can use
NDT’s estimated transform for the current frame, but for that, VRF
must wait for NDT to complete before it can run ICP. To alleviate
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(a) On-campus deployment with a single RSU

(b) Off-campus deployment with two RSUs

(c) CarLA scenario with 6 RSUs

Figure 12: VRF deployments in the real world and simulation with RSUs
in yellow and vehicle trajectory in blue.

this bottleneck, VRF extrapolates the vehicle’s transform from the
previous frame as an initial guess for ICP in the current frame
(Fig. 11). For extrapolation, it computes a motion vector by simply
subtracting the vehicle’s transform in the previous two frames. Then,
it uses that as an initial guess for ICP in frame n. With this, VRF
can quickly compute an initial guess for ICP.

GPU Offloading. We run both NDT and ICP on the GPU.

4 EVALUATION

4.1 Methodology

Implementation. We implemented VRF in the Robot Operating
System (ROS). Our implementation consists of three C++ ROS
nodes: a) the RSU node, b) the NDT node, and c) the Fusion node.
The RSU node resides at the RSU. It computes diff clouds from the
RSU point cloud and broadcasts them over the wireless network. The
NDT and Fusion nodes run at the vehicle. The NDT node localizes
the vehicle in the 3D map. The Fusion node listens for vehicle point
clouds and diff clouds. It reconstructs the RSU point cloud, aligns
it with the vehicle point clouds, stitches them, and then transforms
the fused point cloud into the vehicle’s coordinate system. We have
implemented offline registration and alignment accuracy as separate
nodes that run offline. The external libraries we have used include
PCL (Point Cloud Library) [6], and ROS [7]. To build 3D maps, we
use FAST-LIO2 [57].
Real-world Testbed. We built our own testbed for VRF (Fig. 12
and Fig. 13) consisting of a vehicle and one or multiple RSUs. In our
experiments, we used four different types of LiDARs. Two of them
are 128-beam LiDARs (OS0-128 and OS1-128) with 90◦ and 45◦

field-of-views (FoV). The other two are 64-beam LiDARs (OS0-64
and OS1-64) with 90◦ and 45◦ FoVs. We mounted the RSU LiDARs
3-5 m from the ground. On-board the vehicle, we had a laptop with
an Intel i7 CPU, 32 GB RAM, and an NVIDIA GeForce RTX 3060
GPU. At the RSUs, we used a laptop with an Intel i9 CPU, 16 GB
RAM, and an NVIDIA GeForce RTX 3070 Ti GPU. Vehicle and
RSUs used an ASUS dual band AX6000 router to communicate with
each other over Wi-Fi 802.11ax at 5 GHz.

We deployed this testbed at two different locations i.e., on-campus
(Fig. 12a) on a two-way street adjacent to a parking lot, and off-
campus (Fig. 12b) on a busy two-way public road. From these
deployments, we also record LiDAR traces for accuracy evaluations.
To generate ground truth, we manually align the vehicle and RSU
point clouds using CloudCompare [2]. In the on-campus deployment,
we mounted OS1-128 LiDARs on both the vehicle and the RSU.
The off-campus deployment had two RSU nodes with OS1-64 and
OS1-128 LiDARs and a vehicle node with an OS0-64 LiDAR. These
LiDAR traces consist of 63,512 point clouds in which the vehicle
drove for around 12 km. VRF’s code and dataset are open-source6.
Simulation. We use CarLA [20], an industry-standard photo-
realistic simulator, to capture additional LiDAR traces for our
experiments. Compared to the real-world dataset, with CarLA, we
can simulate diverse traffic conditions, multiple LiDAR settings, and
different traffic scenarios. We capture LiDAR traces from CarLA
and then process them offline using the same compute resources as
the real-world setup. These LiDAR traces consist of 20,000 point
clouds in which the vehicle drove for 2 km.
Evaluation Metrics. In our evaluations, we measure the latency and
accuracy of VRF. Latency is the time duration from when a RSU
LiDAR captures a 3D point cloud to when the vehicle fuses it with
its own point cloud. This latency includes both network latency, and
compute latency.

For accuracy, we use the relative translational error (RTE) and rel-
ative rotational error (RRE) as defined in the KITTI benchmark [22].
Both measure the root mean square error between the predicted
and ground truth transformations. For both, lower is better. RTE is
measured as ||t − tg||2 where t is the translational vector for VRF
and tg for the ground truth transformation. RRE is measured as
Σ3

i=1| angle (i) |. The angle is F (R−1
g ·R) where F(.) transforms

a given rotation matrix into three Euler angles. Rg and R are the
ground truth and the estimated transformations, respectively.

4.2 End-to-end Experiments: Performance
Real-world Deployment. To evaluate performance in real-world de-
ployments, we connected the RSU nodes to the vehicle node through
Wi-Fi (to emulate 5G). We drove a vehicle back and forth (blue
trajectory in Fig. 12a and Fig. 12b) as it received and fused point
clouds from the RSUs in both deployments. In these experiments,
we measured end-to-end latency. During our experiments, there was
heavy pedestrian and vehicular traffic on the road.

Fig. 14 plots the end-to-end latency (both compute and network)
as a function of time for the real-world deployments with three differ-
ent combinations of vehicle and RSU LiDARs for 9-minute drives.
In all three scenarios, the average latency was within 20 ms and the
99th percentile (p99) was within 34 ms. These numbers are well
within the 100 ms latency budget for autonomous driving [11, 50]
and give ample time (80 ms on average) to downstream perception
modules to process the fused point clouds. This demonstrates that
VRF can fuse raw vehicle and RSU point clouds in approximately
20 ms, even for data-intensive 128-beam LiDARs!
CarLA Traces. In CarLA, we mounted six 64-beam LiDARs on
a road and drove a vehicle with a 64-beam LiDAR through it as

6GitHub Repository: https://github.com/nsslofficial/VRF
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Figure 13: VRF deployment setup.
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Figure 14: VRF latency on our real world testbed
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Figure 15: VRF’s accuracy on CarLA dataset.

Dataset RTE (cm) RRE (◦)
Mean p95 p99 Mean p95 p99

On-campus (913 pairs) 4.9 15.8 22.3 0.1 0.2 0.4
Off-campus (420 pairs) 6.9 16.0 21.7 0.4 0.8 1.5

CarLA (4500 pairs) 1.6 5.0 6.6 0.05 0.1 0.15

Table 3: VRF end-to-end accuracy across multiple datasets.

shown in Fig. 12c. In our simulations, there were approximately
10-15 vehicles near the vehicle node at all times. We collected RSU
and vehicle LiDAR traces from CarLA, and then processed them
offline.

We replayed both traces on our vehicle and RSU nodes in a lab
setup and measured the end-to-end latency. In this setup, we used
Wi-Fi for communication. On average, the end-to-end latency was
12.2 ms whereas the 99th percentile latency was 27.7 ms (we omit
the graph for brevity). The results reinforce those from the real-world
deployment i.e., VRF fuses raw vehicle and RSU point clouds with
minimal latency, well within the 100 ms latency budget.

4.3 End-to-end Experiments: Accuracy
Using the same setup described in the previous experiments, we
evaluated VRF’s accuracy using RTE and RRE.
Real-world Deployment. In our real-world deployments, we
recorded vehicle and RSU point clouds in ROS bags. Then, for
point cloud pairs with a reasonable amount of overlap, we annotated
and registered them offline using CloudCompare [2]. We manually
registered over 1300 point cloud pairs for accuracy evaluations. Of
these, 420 point cloud pairs were from our on-campus dataset, and
913 point cloud pairs were from the off-campus dataset.

For point clouds with a lower overlap, we could not generate
ground truth and leave those evaluations for CarLA. The average
RTE and RRE for the off-campus dataset were 6.9 cm and 0.4◦,
and those for the on-campus dataset were 4.9 cm and 0.1◦ (Tbl. 3).
Besides mean errors, the p95 and p99 RTE errors were also within
16 cm and 22 cm, respectively. This demonstrates that VRF can
ensure cm-level accuracy for point cloud fusion, a requirement of
autonomous driving systems, and do so within 20 ms of end-to-end
latency!
CarLA. Because it is easier to generate ground truth in simulations,
we more thoroughly evaluated VRF in CarLA. Fig. 15 plots VRF’s
RTE and RRE as a vehicle drove back and forth in the CarLA
scenario (Fig. 12c). While driving, the vehicle would switch from
one RSU to another. The vertical dotted lines in Fig. 15 delineate

Approach Easy group Hard group

RTE (cm) RRE (◦) Latency (ms) RTE (cm) RRE (◦) Latency (ms)

VI-Eye 14.65 2.01 223 16.69 2.08 218
VRF 1.49 0.06 16.3 1.49 0.08 15.5

Table 4: Evaluating VRF on the VI-Eye [25] dataset

these coverage regions with the yellow triangles showing the position
of the RSU. The average RTE for over 4500 point cloud pairs was
1.6 cm whereas RRE was 0.05◦. The 99th percentile numbers were
also relatively low i.e., 6.6 cm and 0.15◦. The errors are lowest at
the center of the coverage region when the vehicle is nearest the
RSU. At this stage, the overlap between the vehicle and RSU point
clouds was the highest, and direct alignment significantly improved
the previous indirect alignment. As the vehicle moved away from the
RSU, the overlap decreased, and hence RTE/RRE would increase.
This demonstrates that VRF can accurately fuse vehicle, and RSU
point clouds with cm-level accuracy, even when the vehicle is away
from the RSU.

4.4 Comparison with Prior Work
We compared VRF with VI-Eye [25], a state-of-the-art vehicle RSU
point cloud fusion system. For a more than fair comparison, we
evaluated alignment accuracy and end-to-end latency on VI-Eye’s
dataset. This dataset contains point clouds captured from a vehicle
and multiple RSUs spanning a length of 1.12 km. The point clouds
were captured with Livox Horizon LiDARs [4] with a vertical and
horizontal FoV of 25◦ and 81◦, respectively. Because the LiDAR has
a limited horizontal FoV, point cloud pairs in which the vehicle was
traveling opposite to the direction of the RSU LiDAR are labeled as
hard group (because the overlap is low), and others are labeled as
easy group.

In terms of accuracy, compared to VI-Eye, VRF reduces RTE
by an order of magnitude, and RRE by two orders of magnitude
for easy and hard groups (Tbl. 4). VI-Eye matches road-specific
features (e.g., lane markers, traffic signs) to align point clouds. As
opposed to feature-matching, scan-matching techniques (ICP) are
more accurate but can be expensive. VRF uses scan-matching but
reduces computational complexity by a) indirect alignment with a 3D
map, b) offline RSU registration, and c) offline alignment accuracy
forecasting. Then, every frame, it can run an additional lightweight
direct alignment to further reduce alignment error without increasing
latency.

We ran VI-Eye and VRF on the same vehicle and RSU nodes and
measured their end-to-end latency (including network transmission
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Figure 16: VRF improves a vehicle’s reaction time.

time). Relative to VI-Eye, VRF reduces latency by an order of
magnitude! For VI-Eye, the latency was 223 ms, whereas for VRF,
it was only 16.3 ms.

4.5 Application-level Benefits
In this section, we demonstrate the efficacy of VRF in improving
the performance of autonomous driving applications.
Reaction Time. Fig. 1 shows two scenarios from the NHTSA pre-
crash topology [14] where occlusions can result in a traffic accident.
For these scenarios, we define reaction time as the time duration
from when the grey vehicle first sees the yellow cab to when the
distance between their colliders is effectively 0 (i.e., they crash).
A higher reaction time indicates the grey vehicle can perceive the
yellow cab early on, and hence take evasive action. To demonstrate
that VRF can improve reaction time, we simulate both scenarios
in CarLA. In doing this, we install an RSU at the intersection. We
attach 64-beam LiDARs to the RSU and the grey vehicle. We collect
LiDAR traces and process them offline.

From these LiDAR traces, we build two sets of point clouds i.e.,
un-fused vehicle point clouds and fused point clouds. We obtain
the fused point clouds by running VRF on the LiDAR traces. The
un-fused vehicle point clouds contain point clouds captured from the
grey vehicle. On both sets of point clouds, we run an object detector.
This detector takes a point cloud and performs background subtrac-
tion against a 3D map to find dynamic points and then groups them
into objects using Euclidean clustering. Fig. 16 plots the number
of detections from this detector as the grey vehicle drives towards
the intersection (with the distance between the vehicle and RSU on
the x-axis). The number of detections in fused and un-fused point
clouds are green and red, respectively.

In these scenarios, the vehicle point clouds (red) first observe the
yellow cab at a distance of 11 m and 27 m in red light violation
and unprotected left turn scenario, respectively. VRF (green), on
the other hand, observes the yellow cab at distances of 40 m, and
70 m. In these scenarios, for a vehicle traveling at 30 km/hr, VRF
improves reaction time from 1 second to 5 seconds (i.e., a factor of
5).
Point Density and Coverage Volume. Downstream perception
modules like object detection [60] and semantic segmentation [40]
need point clouds with a high point density. Point density is the num-
ber of points per unit volume. The blue line in Fig. 17 represents the
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Figure 17: VRF’s improves point density and coverage volume relative
to an un-fused vehicle point cloud. Both y-axes depict raw numbers (not
percentages).

difference in the point density (right y-axis) for VRF’s fused point
cloud and a baseline un-fused cloud i.e., single vehicle perception.
VRF improves point density in all cases. Even when the vehicle
is 100 m away from the RSU, VRF improves point density by as
much as 3 pts/m3. As expected, the increase in point density is very
significant (14 pts/m3) when the vehicle is near the RSU.

To demonstrate that VRF improves point density over the entire
point cloud, we measure coverage volume. It is that region of the
point cloud where point density is high. To calculate coverage vol-
ume, we divide a point cloud into a grid, compute point density for
each cell, and find the volume of cells where point density is above δ

(in this case, 8 pts/m3). The green line in Fig. 17 plots the difference
between coverage volume (left y-axis) for VRF’s fused point cloud
and a baseline un-fused point cloud. VRF improves coverage vol-
ume significantly in all cases, especially when the overlap between
the point clouds is small. The increase in coverage volume is low
when the vehicle is near the RSU because both point clouds capture
the same spatial area.

4.6 VRF Pipeline Optimizations
In this section, we quantify the contribution of each optimization
in VRF’s fusion pipeline in reducing end-to-end latency (without
compromising accuracy). To do this, we compare VRF against three
other pipelines (Tbl. 5) on 1500 point cloud pairs. The first row
represents the strawman pipeline (Fig. 10) with no optimizations en-
abled. The last row represents VRF (Fig. 11) with all optimizations
enabled. The three columns (Diff, Reference Cloud, and NDT) show
the effects of the three optimizations described in §3.3.

The strawman pipeline (a serialized design) has an average latency
of 39 ms. VRF parallelizes most of these components to reduce the
end-to-end latency by a factor of 3 i.e., from 39 ms to 12.5 ms,
without sacrificing accuracy.

Point clouds are voluminous and transmitting them over the net-
work is expensive. By sending diff clouds (Diff ), the RSU can reduce
the point cloud sizes by 56 x. This reduces network latency, and
hence end-to-end latency by a factor of 2. This comes at the cost of
an increase of 0.03 cm in RTE.

By using the reference RSU point cloud for direct alignment
(Reference Cloud in Tbl. 5), the vehicle runs ICP in parallel while
it waits to receive the diff cloud. However, this reduces end-to-
end latency slightly i.e., by 1.02 ms. In addition to the two-point
clouds, ICP also needs an initial guess, which it computes using the
vehicle’s position. For this, it is blocked until the vehicle runs NDT.
To alleviate this bottleneck, VRF computes motion vectors for the
vehicle and then uses them to extrapolate the vehicle’s position from
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Optimization Latency (ms) Alignment Error
Diff Ref Cloud NDT RTE (cm) RRE (◦)

✘ ✘ ✘ 39.28 1.75 0.05
✔ ✘ ✘ 19.84 1.78 0.05
✔ ✔ ✘ 18.82 1.65 0.05
✔ ✔ ✔ 12.55 1.44 0.05

Table 5: Optimizations in VRF’s fusion pipeline. A ✔ indicates the opti-
mization is enabled, and ✘ indicates it is disabled.
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Figure 18: Latency distribution of VRF on a real-world dataset.

Error Source Alignment Error
Mapping Localization Registration RTE (cm) RRE (◦)

✔ ✔ ✔ 1.49 0.05
✘ ✔ ✔ 1.29 0.04
✘ ✘ ✔ 1.26 0.04
✘ ✘ ✘ 0 0

Table 6: Breakdown of errors in the VRF’s end-to-end alignment.

the last frame into the current frame. This way, VRF’s vehicle node
can run ICP as soon as a new vehicle point cloud is available. As
soon as ICP converges, it applies that transformation matrix to the
received RSU point cloud. This way, ICP and network transmission
run in parallel.

Fig. 18 plots the end-to-end latency for VRF. The red dots show
frames where the RSU point cloud is received and reconstructed at
the vehicle but VRF waits for the ICP to estimate a transformation
matrix. The blue dots show frames where ICP has already estimated
a transformation matrix but the vehicle has not received and recon-
structed the RSU point cloud. This shows that, on average, VRF’s
bottleneck is the network transmission of the RSU point cloud.

Using the reference point cloud as opposed to the current RSU
point cloud for ICP actually improves alignment results (by 0.13 cm).
This is because, in practice, the clocks of the RSU LiDAR and
vehicle LiDAR can be off in a range of 0 to 50 ms. In a scene with
dynamic objects, their positions in one point cloud might be captured
earlier as compared to the other point cloud. As such, the alignment
results can be slightly off. By using a reference point cloud, with
no dynamic objects, ICP aligns only the static regions which do not
change over short timescales.

4.7 Ablation Studies
Alignment Error Sources. We quantify external sources of error
that contribute to the end-to-end alignment error (Tbl. 6). The three
sources of error are mapping error, localization error, and offline
registration. Mapping error represents an inherent error present in
the 3D map. Localization error is the error in estimating the pose of
the vehicle. Offline registration is the error in estimating the pose of
the RSU LiDAR.

Approach RTE (cm) RRE (◦)

ICP 858 16.37
NDT 329 30.67
VRF 2.25 0.02

Table 7: VRF’s ability to align the RSU to the 3D map.

Approach RTE (cm) RRE (◦) Latency (ms)

GPS 618 42.97 364
FGR 3896 339 242

SAC-IA 4832 130 224
VRF 2.41 0.04 129

Table 8: VRF’s ability to generate accurate initial guesses.

The first row represents VRF with all three sources of error. When
VRF uses a perfect ground truth map (second row), it significantly
reduces RTE and RRE because both vehicle localization and offline
registration use the 3D map. However, even with a perfect ground
truth map, estimating the pose of the vehicle and RSU LiDARs can
have errors (second and third rows). When the vehicle uses ground
truth localization, the only source of error is offline registration (third
row). In a perfect world, with a ground truth 3D map and perfect
RSU and vehicle localization, the RTE and RRE will be 0.
Offline Registration. In this section, we quantify the ability of
VRF to align the RSU point cloud to the 3D map. Scan matching
algorithms like ICP and NDT can align point clouds if they have an
accurate initial guess of the transformation between the point clouds.
Without this, ICP and NDT cannot align the RSU point cloud to the
3D map (Tbl. 7). VRF, on the other hand, generates an accurate
initial guess (§3.1) and then uses ICP to finely align the RSU point
cloud to the 3D map. By doing so, it reduces RTE by two, and RRE
by three orders of magnitude as compared to ICP.

We evaluated the ability of VRF to generate an accurate initial
guess for ICP against three other baselines: GPS, FGR [66], and
SAC-IA [49] (Tbl. 8). We generated initial guesses using these
three techniques, fed them to ICP, and then measured the alignment
accuracy. GPS is reasonably accurate (up to 1-10 m), but it has
no way to estimate the RSU LiDAR’s orientation, hence cannot
guarantee accurate alignment.. FGR, and SAC-IA extract and match
features from point clouds. However, the RSU point cloud is captured
from a different viewpoint as compared to the 3D map. As such,
FGR and SAC-IA cannot find and match common features between
the two point clouds, leading to an inaccurate initial guess and hence
inaccurate alignment. Conversely, VRF uses viewpoint-agnostic
techniques (i.e., plane-matching and trajectory-matching) on raw
point clouds and can align the RSU point cloud to the 3D map
accurately and quickly.
Alignment Accuracy Forecaster. In this section, we evaluate
VRF’s ability to forecast whether direct alignment will improve the
alignment between the RSU and vehicle point clouds. To do this,
we compare VRF against four other techniques. Direct alignment
(DA) runs ICP every frame. Indirect alignment (IA) does not run
ICP and uses relative poses from the 3D map. Online forecasting
(OF) determines whether to run direct alignment every frame by
using the inter-point density of current point clouds.

We collected multiple datasets from CarLA for the same route
using different combinations of LiDARs. The x-axis of Fig. 19 shows
the channel combination of the vehicle and RSU LiDAR. That is,
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Figure 19: Alignment Accuracy Forecaster.

Traffic Alignment Error Latency (ms)RTE (cm) RRE (◦)

Low (6 – 10 vehicles) 1.42 0.05 11.85
Medium (10 – 15 vehicles) 1.64 0.05 12.11

High (15 – 20 vehicles) 1.55 0.05 12.61

Table 9: Performance of VRF in various traffic conditions

(32, 32) means both RSU and vehicle LiDARs had 32 beams. For
each combination, we calculated the alignment accuracy (RTE) of
each approach for a range of distances from 0 to 180 m between
the RSU and the vehicle node. The y-axis of Fig. 19 represents the
RTE of each scheme relative to an ideal scheme. The ideal scheme
is the theoretical upper limit of the forecaster’s accuracy i.e., it uses
ground truth to determine when to use ICP.

As evident from Fig. 19, for all LiDAR combinations, relative to
direct alignment and indirect alignment, VRF reduces RTE by 7.65
cm and 1.32 cm, respectively. ICP can only improve accuracy if there
is a significant overlap between the two point clouds, otherwise, it
degrades alignment accuracy. Because VRF runs inter-point density
calculations on forecasted point cloud distributions for a range of
distances, it can accurately predict when ICP will correctly align
two point clouds.

Because online alignment uses point clouds from the current
frame instead of synthetically generated ones, it can more accurately
forecast ICP behavior and hence reduce RTE. However, it does so
only marginally and comes at the cost of latency i.e., online align-
ment takes 40 ms to execute per frame. Compared to the non-realistic
ideal case, VRF increases RTE by only 1.5 cm. By trading off 1.5 cm
in RTE, VRF eliminates the need to run alignment forecasting every
frame (effectively reducing latency to 0 ms).

4.8 Sensitivity Analysis
Traffic Conditions. In CarLA, we recorded LiDAR traces in three
different traffic density conditions (Tbl. 9). We ran VRF on each
dataset and measured the end-to-end accuracy and latency. For this
experiment, we ran the ROS bags on the vehicle node, and RSU
node in our lab, using Wi-Fi for communication. As Tbl. 9 indicates,
irrespective of the traffic conditions, VRF accurately fused RSU and
vehicle point clouds within 13 ms with less than 2 cm error.
Vehicle Speed. To evaluate the effect of vehicle speed on VRF,
we collected multiple traces from CarLA by varying a vehicle’s
speed from 10 km/hr to 80 km/hr as it crossed an intersection. Then,
offline, we ran VRF on each trace and measured both the end-to-end
latency and accuracy. Like before, for this experiment, we ran the
ROS bags on vehicle and ROS nodes in our lab, using Wi-Fi for
communication. Experimental results (Fig. 20 and Fig. 21) show
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Figure 20: VRF’s end-to-end latency as a function of vehicle speed.
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Figure 21: VRF’s accuracy as a function of vehicle speed.
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Figure 22: Latency and network BW for different LiDAR settings.

VRF’s accuracy and latency are relatively insensitive to the vehicle’s
speed. Even at speeds as high as 80 km/hr, VRF’s end-to-end latency
was 15.5 ms, whereas alignment accuracy was 1.8 cm and 0.02◦,
respectively. Across all traces, the average end-to-end latency was
only 15 ms, and alignment error was only 1.6 cm and 0.02◦.
Heterogeneous Sensors. We evaluated VRF on multiple RSU and
vehicle LiDAR configurations and measured the accuracy and la-
tency. As in the previous experiment, we collected data from CarLA
and then replayed those ROS bags using Wi-Fi for communication
in our lab. Fig. 22 shows the end-to-end latency and bandwidth
requirement for each LiDAR combination. Irrespective of the Li-
DAR combination, VRF’s latency is within 13 ms. As expected, as
the number of channels for the RSU LiDAR increases, so does the
required bandwidth. Even then, the required bandwidth is only in
Kbps.

4.9 Offline Operations and Handshake Overhead
In this section, we quantify the overheads of VRF’s vehicle-RSU
handshake, its offline operations, and on-board vehicle storage.
Handshake. As part of the handshake, the RSU sends the vehicle
a compressed reference point cloud. To evaluate the overhead of
this, we collected 200 traces from CarLA simulating vehicle-RSU
handshakes. Our evaluations show that, on average, the size of the
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compressed reference point cloud is 500 KB, and it takes only 12 ms
to send to the vehicle.
Offline Operations. The compute latency for aligning the RSU to
the 3D map (including plane alignment, trajectory alignment, and
ICP) is approximately 7 seconds. Because the RSU is stationary,
VRF aligns it with the 3D map offline, and then reuses the alignment
every frame.
On-board Storage Requirements. Offline VRF runs the align-
ment accuracy forecaster to determine, for some given vehicle and
RSU LiDAR parameters, the maximum vehicle-RSU distance below
which to run additional alignment and then stores these on-board
the vehicle as a lookup table. For large metropolitan cities like San
Francisco (6,399 intersections) and New York City (13,543 inter-
sections), the lookup tables will only take 77 KB and 163 KB of
on-board vehicle storage, respectively. In addition, VRF assumes
the presence of an on-board 3D map. The size of three maps we built
for our on-campus, off-campus, and CarLA datasets were 6 MB,
3 MB, and 2 MB, respectively.

5 RELATED WORK
Cooperative perception addresses sensor occlusions by using ex-
ternal sensors to extend a vehicle’s perception range beyond its
own sensors. These external sensors might be on-board other vehi-
cles [32, 38, 44, 59], or they might be mounted on road-side infras-
tructure [24, 25, 51]. Of these works, AVR [47] shares raw 3D point
clouds between two vehicles and aligns the point clouds using a 3D
map. However, sharing raw 3D sensors consumes significant net-
work bandwidth and cannot scale to a large number of vehicles. To
this end, region-based data-sharing approaches like AutoCast [48]
and EMP [64] determine what data is relevant for a given vehicle,
and only share that over the network, scaling to a larger number of
vehicles. Additionally, the clocks of 3D sensors on different vehi-
cles might be out-of-sync. RAO [63] tackles this by sending point
clouds that are motion-compensated using occupancy flow predic-
tion. Changes in the environment can render 3D maps stale, and this
can adversely affect cooperative perception accuracy. To this end,
CarMap [8] uses crowdsourced real-time map updates to incorpo-
rate environmental changes in 3D map. Similarly, VI-Map [23] uses
road-side LiDARs to update 3D maps.

Like VRF other works have also explored using road-side infras-
tructure for vehicle-RSU cooperative perception [9, 16, 24, 25, 31,
36, 39, 51, 64, 65]. Perhaps the most relevant to VRF is VI-Eye [25]
which uses early fusion to fuse a vehicle point cloud with raw RSU
point clouds. However, like other early fusion approaches, the end-
to-end latency is significantly high i.e., on the order of 200 ms.
Late fusion approaches like VIPS [51] instead fuse bounding boxes
to reduce end-to-end latency. However, this comes at the cost of
alignment accuracy.

On the other hand, intermediate fusion approaches (TransIFF [17],
V2X-ViT [56], DiscoGraph [34], and F-Cooper [16]) use end-to-end
neural networks to extract point cloud features, transmit them and
then fuse them as bounding boxes. Both intermediate and late fusion
approaches lack generality to other downstream modules. To our
knowledge, VRF is the first system that ensures both high accuracy
and low latency whilst enabling generality to downstream modules.

ICP [62] and NDT [10] are classical scan-matching methods for
point cloud alignment. ICP uses a pair-wise alignment, while NDT
employs a probabilistic approach to estimate the transformation be-
tween point clouds. These methods are compute-intensive and their
accuracy heavily depends on an accurate initial guess of the trans-
formation. Feature-based methods like SAC-IA [49] and fast global
registration (FGR) [66] find an accurate initial guess of the trans-
formation. These methods perform noticeably worse in cooperative
perception because of the repeating structures in traffic scenarios.
VRF uses raw scan matching for alignment and reduces latency by
running computations offline.

6 DISCUSSION AND FUTURE WORK
V2V Cooperative Perception. Though in this paper we focus on
vehicle-RSU point cloud fusion, VRF can also be used for vehicle-
to-vehicle (V2V) point cloud fusion. In that case, both vehicles
will localize themselves in the 3D map online and improve fusion
accuracy with an additional direct alignment. However, because
the sender vehicle is dynamic, the V2V fusion pipeline cannot use
a reference point cloud to pre-compute the direct alignment or to
reduce network latency. We leave a more thorough examination of
this to future work.
Late Fusion with VRF. VRF can enable high accuracy and low
latency late fusion with minimal changes to its pipeline. To do this,
the RSU will extract and send bounding boxes to the vehicle. At
this point, the vehicle would already have aligned with the RSU’s
reference point cloud and will only need to transform the RSU
bounding boxes using that alignment.
Reliance on On-board 3D Map. VRF assumes the on-board pres-
ence of a 3D map, the alignment to which reduces the computational
complexity of the vehicle-RSU direct alignment. Because 3D maps
can be expensive to construct and update, future work can explore
using GPS (along with other techniques) for relative localization.
Finally, future work can also explore improving alignment accuracy
using prior registrations.

7 CONCLUSIONS
Vehicle and road-side point cloud fusion can improve on-board vehi-
cle perception. However, aligning the point clouds can be expensive
and inaccurate. Prior work focuses on latency or accuracy, but not
both. VRF optimizes for both. VRF’s key insight is to align the
road-side and vehicle point clouds indirectly i.e., by aligning them to
a 3D map. In doing so, it incorporates novel offline registration and
alignment accuracy forecasting algorithms. VRF ensures low latency
by running operations offline and leveraging previous computations.
On real-world testbeds and CarLA traces, VRF fused point clouds
with an average accuracy of 5 cm and an end-to-end latency of less
than 20 ms. This is an order-of-magnitude improvement over prior
work both in terms of latency and accuracy.
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