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ABSTRACT
Tracking the position and orientation, or pose, of a viewing
device enables AR applications to accurately embed virtual
content in physical spaces. Mobile OSs track pose by match-
ing device camera images against street-level imagery. Thus,
pose tracking is often unavailable at off-street pedestrian lo-
cations. UbiPose enables pose tracking at such locations us-
ing aerial meshes, generated from satellite imagery, that are
likely to be more widely available at these locations. How-
ever, matching a camera image against an aerial mesh can be
error-prone, even with modern neural matchers. These neural
components are also compute-intensive. UbiPose contains a
novel pose tracking pipeline that runs entirely on a mobile
device using fast-path optimizations designed to accept or
reject pose estimates in many cases, without sacrificing accu-
racy. Experiments on real-world traces show that it achieves
tracking accuracy comparable to AR pose tracking in iOS
in places where that is available, and is able to track pose
accurately in places where it is not.
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1 INTRODUCTION
Augmented reality (AR) applications place virtual content in
a user’s view of the physical world. These applications can
revolutionize the way we interact with the physical world.
They can deliver contextual cues that enrich our experience
of physical spaces, such as museums, monuments and other
historical sites. They can also promote safety during walking
or driving by alerting us to impending dangers beyond our
visual field of view. Motivated by this potential, major mobile
OSs, iOS and Android, contain mature AR application devel-
opment platforms, ARKit [9] and ARCore [36] (respectively).

The central primitive that enables AR is the ability to track
viewer pose – the position and orientation of the viewing de-
vice (a smartphone camera, or a headset), expressed in world
coordinates. With accurate pose, applications can correctly
align virtual content in the physical space captured within the
viewer. Inaccurate alignment can adversely impact the user
experience. In this paper, we focus on outdoor pose tracking,
which both ARKit and ARCore support.

Both have built-in modules that provide continuous AR
pose tracking. At a high-level these modules contain two
components [8, 36]: a localizer that estimates the current
pose of a view devices, and, because localization can be ex-
pensive, a tracker that tracks viewer movements over short
timescales to update viewer pose in between localizer invoca-
tions. ARKit and ARCore use visual-inertial odometry (VIO)
trackers, which fuse camera images with inertial sensor read-
ings, and visual localizers that determine pose of a viewer’s
camera based on a corpus of pre-collected images.

https://doi.org/10.1145/3570361.3613263
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The visual localizers in ARKit and ARCore use terres-
trial (or surface-level) imagery. This kind of imagery powers
Google Street View and Bing Streetside. At scale, cameras
attached to specially-outfitted vehicles periodically collect
this imagery by sweeping a large parts of the planet. As such,
visual localizers in these AR platforms are likely to be un-
available in locations where at-scale imagery collection is
difficult: pedestrian areas in corporate or university campuses,
outdoor shopping areas, apartment complexes, and so on (§2).

To address this shortcoming, we explore the design and
implementation of UbiPose, an on-device AR pose tracker that
uses aerial imagery collected by earth observation satellites
or aircraft (§3). This imagery, pre-processed into a 3D aerial
mesh is widely available in, for example, Google Earth [38].
Using aerial meshes can increase the availability of AR pose
tracking to areas where terrestrial imagery is unavailable.
By one estimate [48], Google Earth has 3× the coverage of
Google Street View. To our knowledge, no prior work has
explored AR pose tracking using aerial meshes (§6).
Challenges and Contributions. Visual localization using
aerial meshes presents two challenges. The first challenge is
ensuring accuracy of the estimated pose. Visual localizers
match visual features in a device camera image to visual fea-
tures in collected imagery [52, 69]. Knowing the 3D positions
of features in visual imagery (obtained offline), a localizer can
estimate camera pose using the matched features. An aerial
mesh is a compact 3D representation of the physical world
generated from aerial 2D imagery. As such, it lacks some
visual detail, so matching features in a 2D image to features
in a 3D mesh can result in significant pose errors (§3.2).

Recent work [67] has shown that modern neural feature
extractors and matchers can localize a camera image by
matching it to images rendered from a terrestrial mesh.
Aerial meshes are of poorer quality than terrestrial meshes, so
UbiPose cannot directly use this approach (§3.2). Matching
against features in the entire rendered corpus can result in
false positives, leading to poor pose estimates at the tail (e.g.,
95th percentile).

To address this, our first contribution is the design of a VIO-
assisted localizer (§3.3). Instead of pre-rendering images and
extracting features offline, UbiPose renders multiple images
(for robustness to VIO errors) at the location determined by
VIO, then extracts features from the rendered images and uses
these to match and localize. This significantly improves tail
localization accuracy by scoping the feature search.

However, this implies that UbiPose must render, extract,
match, and localize on the mobile device. Especially with
heavyweight neural extractors and matchers [24, 74], this can
easily overwhelm mobile device compute resources.

Our second contribution is the design of optimizations
that reduce UbiPose’s resource footprint (§3.4). Two opti-
mizations, Lift-and-Project and Early-Exit respectively al-
low fast-path acceptance and rejection of pose estimates by
reusing successful matches from recent camera frames. A
third, Fused-Match projects features from multiple rendered
images into one to reduce the number of invocations to the
matcher when full-path processing is necessary.
Summary of Results. On traces collected in three major
metropolitan areas in North America, UbiPose’s accuracy
is comparable to ARKit’s (§4). In many of these locations,
ARKit is unavailable: there, UbiPose is able to obtain pose
estimates with the same accuracy (about 1 m positioning error
and 1◦ orientation error at the tail) as in locations where
ARKit is available. This is encouraging, and suggests that
aerial-mesh based pose tracking can increase pose tracking
coverage. UbiPose runs on modern mobile device hardware
with modest resource footprints and its optimizations reduce
latency by 2× and power consumption by 20%.

2 BACKGROUND AND MOTIVATION
We first introduce background and terminology, then describe
shortcomings in the state-of-practice in pose tracking.
Pose. This term refers to the position and orientation of an ob-
ject along six degrees of freedom (6DoF) – three translational
(x,y,z) and three rotational (roll, pitch, yaw) axes [28]. Robot-
ics, autonomous driving, and mixed reality applications need
to estimate the precise pose of objects for motion planning or
for rendering virtual objects in a scene.
Augmented Reality (AR). AR applications place virtual ob-
jects or markers in the physical world, as viewed through
a device such as a smartphone or a headset. Indoor AR ap-
plications can enrich the viewing experience in museums,
aid navigation in unfamiliar spaces, or enhance shopping in
malls and stores [3, 23, 34, 44, 61, 70, 83]. Outdoor AR
can enhance visitor experience at landmarks, aid pedestrian
navigation, or gamify exercise [47, 64, 80, 85, 92].

As an example outdoor AR, at WWDC 2020 Apple first
demonstrated an AR art installation in San Francisco (Fig. 1).
This installation used AR to create an immersive experience
that inserted virtual art into the physical environment. Users
could use their iPhones to view the installation and to inter-
act with the virtual art piece. The ability to precisely posi-
tion and orient the virtual art was crucial to the success of
this demonstration. Without the proper alignment of virtual
objects relative to the physical environment as seen by the
viewing device (the iPhone in this case), users would have
had a jarring and disjointed experience.
AR Pose Tracking. To accurately position a virtual object
in the physical world, AR applications need a precise esti-
mate of the pose of the viewing device (viewer pose) in the
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Figure 1: Virtual art rendered using Apple
ARKit, from [4].

Figure 2: ARKit unavailability in the down-
town area of Arcadia, CA, USA.

Figure 3: ARKit unavailability in Pasadena,
CA, USA.

global coordinate system. Since the viewer can move through
the physical space, AR applications must track viewer pose
continuously and accurately to enable a smooth viewing ex-
perience. We call this the AR pose tracking problem.

In this paper, we focus on outdoor AR pose tracking. Of
particular interest to us is the ubiquity of outdoor AR pose
tracking. Ubiquitous pose tracking: (a) works on commodity
mobile devices without assuming additional sensors or other
specialized equipment, and (b) can track pose well in a wide
range of outdoor physical spaces.
The State-of-practice in Outdoor AR Pose Tracking. While
much research has explored outdoor AR pose tracking (§6),
the state of practice in ubiquitous pose tracking is represented
by Apple’s ARKit [8] and Google’s ARCore [36]. Apple
used ARKit to develop the virtual art installation described
above [4], and we use that as an example to explain how AR
pose tracking enables such applications.
(1) In ARKit, the art installation app developer must provide a

3D model of the art piece, and a geo-anchor (the position
in world coordinates at which to place the art piece).

(2) When a user opens the app on their iPhone, the app in-
vokes ARKit and instantiates an AR session. ARKit then
downloads a map for localization that contains visual
features corresponding to the surrounding environment,
together with feature positions in world coordinates.

(3) As the user moves the camera, ARKit captures camera
images, matches them with features in the map, and uses
these to estimate the pose of the camera in world coordi-
nates. Using the pose, and a model for the camera and its
parameters, ARKit can place the virtual art piece in the
corresponding pixel locations on the iPhone display.

ARKit uses street-level terrestrial imagery to obtain features
of the environment [8].
Gaps in the State-of-practice. To understand the accuracy
and ubiquity of outdoor AR pose tracking, we evaluated
ARKit in three metropolitan areas (§4).

Accuracy. ARKit achieves 0.5-1.1 m median position error,
0.9-2 m 95th-percentile (p95) position error, 0.5-1.2◦ median
position error, and 1.1-2.3◦ p95 rotation error. To ensure good

user experience, it is necessary to have low tail error in addi-
tion to having low median error, so we consider p95 errors
throughout our work. In general, then, ARKit is remarkably
accurate even at the tail.

Ubiquity. While ARKit’s GeoTracking works well in many
places, it is limited to specific areas. It appears to use terres-
trial imagery [4] collected for the Look Around [5] feature
in Apple’s Maps. This is similar to Google Maps’ Street
View [43], or Bing Maps’ Streetside [56]. At scale, these
companies capture most1 of this kind of imagery using ve-
hicles driving on public streets or other areas accessible to
vehicles. This means that ARKit pose tracking is unlikely to
be available in pedestrian only areas: outdoor malls, parts of
college and corporate campuses, large apartment complexes,
vehicle-restricted urban centers, amusement parks, and so on.

Apple’s Maps app supports the ability to test for ARKit
availability at a given location, by setting a geo-anchor at
that location on a map. This allows us to check unavailabil-
ity by virtually visiting the location. To demonstrate how
widespread ARKit unavailability can be, we virtually visited
offstreet locations (parking lots, side streets) within about
20-30 blocks in the downtown areas of two cities in North
America (locations omitted for anonymity). In each block, we
tested one location for availability. Figs. 2 and 3 shows that
ARKit unavailability can be pervasive in these areas.

Android ARCore’s pose tracking is also unavailable in
some locations. ARCore exports an interface to test for avail-
ability of its visual positioning system (VPS), but in our expe-
rience, this interface is unreliable: it reports availability even
in areas that we verified were unavailable. Instead, we physi-
cally visited four qualitatively different locations to determine
ARCore availability. Tbl. 1 reports position and heading er-
rors at these locations as reported by ARCore, as well as
the corresponding errors at a street-side location near these
locations. In each of these cases, errors at these locations
are up to 10× greater than at the street-side — the latter has
accuracy consistent with ARKit (§4). At these locations, AR-
Core appears to be estimating pose from GPS and its compass

1Some of this imagery is user-contributed [43]; such imagery is unlikely to
be dense enough to permit accurate AR pose tracking.
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Sample locations At the location Nearest street-side
Housing Complex 9.31m, 23.9◦ 0.77m, 1.7◦

University Campus 8.92m, 11◦ 0.85m, 1.4◦

Church 6.47m, 24.7◦ 0.80m, 1.5◦

High School 3.76m, 3.7◦ 1.45m, 2.4◦

Table 1: ARCore reported position (in m) and heading (in ◦) errors
at the location and on the nearest street.

because imagery is unavailable for visual positioning. GPS
is ubiquitous, but its position error (≤ 8m 95% horizontal
error) [31] is an order of magnitude larger than ARKit’s.
Towards Ubiquitous AR Pose Tracking. This analysis sug-
gests that outdoor AR pose tracking is not as ubiquitous yet
as needed for widespread use of AR applications, both on
iOS and Android. In this paper, we explore techniques to sig-
nificantly increase the coverage of AR pose tracking beyond
locations where street-level imagery is available.

3 UBIPOSE DESIGN
We now describe the design and implementation of UbiPose.

3.1 Increasing Availability of Pose Tracking
Goal. Truly ubiquitous AR pose tracking would mean the
availability of AR pose tracking at any location on the planet
accessible to pedestrians or vehicles, public or private. Ubi-
Pose takes a step towards this goal by expanding the coverage
of AR pose tracking beyond areas where street-level imagery
is available. §7 discusses what it would take, beyond UbiPose,
to achieve true ubiquity.
Requirements. To this end, we impose three requirements:
(1) Where street-level imagery is available, UbiPose should

achieve pose tracking accuracy comparable to ARKit.
This would allow mobile apps to track pose without rely-
ing on street-level imagery.

(2) Where street-level imagery is not available, UbiPose
should still be able to achieve pose tracking accuracy
comparable to that achieved by ARKit in areas where
street-level imagery is available. This ensures that
AR apps can have a uniform expectation of accuracy,
regardless of where the user uses the app.

(3) UbiPose should run entirely on the mobile devices with
a modest resource footprint. ARKit, after downloading
its map, runs entirely on the mobile device, so on-device
operation for UbiPose can lower the barrier to adoption.

Key Insight. Instead of relying on street-level imagery, Ubi-
Pose achieves AR pose tracking using aerial meshes.

A mesh is a compact representation of a three-dimensional
object – it approximates object surfaces using a mesh of poly-
gons. The size of the polygons (most meshes use triangles
or quadrangles) represents a trade-off between accuracy and
compactness: smaller polygons result in a high resolution,
more accurate, mesh but the resulting mesh can be larger in

Figure 4: An screenshot of an aerial mesh from Google Earth.

size than those using larger polygons. Beyond capturing the
surface geometry of an object using polygons, mesh represen-
tations usually contain associated surface color and texture
attributes. As such, meshes are often used to compactly store,
and accurately render, 3D objects, for a wide variety of uses.

To generate a mesh, one can use sensors ranging from 2D
cameras to 3D sensors such as stereo or RGB-D cameras and
LiDARs. Today, most mesh generation at scale relies on 2D
images. Photogrammetry [76] can generate a mesh represen-
tation of a (static) 3D object from a sequence of 2D images.
Color mapping and texturing algorithms automatically project
color and texture from images to the mesh surfaces.

An aerial mesh is a mesh of an outdoor space captured from
aerial 2D imagery, obtained either using earth-observation
satellites or specially equipped aircraft. (In contrast, a terres-
trial mesh is captured using surface-level imagery). Fig. 4
shows a picture of an aerial mesh obtained from Google
Earth [38]. As such, aerial meshes can capture the structure
of locations inaccessible to at-scale methods for capturing
surface-level imagery, such as vehicles used to capture Google
Street Views [43]. Examples of such locations include off-
street plazas and malls, as well as privately-owned residential,
corporate, and industrial complexes. By one estimate, aerial
meshes from Google Earth cover up to 36 million square
miles [48] (3× more than Street View) of the Earth’s surface,
or 98% of the human-inhabited regions of the Earth.
Challenges. While aerial meshes potentially provide greater
coverage, we know of no work that has demonstrated accurate
AR pose tracking using these. So, UbiPose must address two
important challenges: (a) how to track AR pose using aerial
meshes (§3.2) and (b) how to do so accurately (§3.3), and
with minimal resources on mobile devices (§3.4).

3.2 Aerial Mesh Based Pose-Tracking
UbiPose’s approach to pose-tracking using an aerial mesh is
qualitatively different from that of prior work. Pose-tracking
requires a fundamental primitive, image localization (esti-
mating the pose of a given image), for which prior work has
considered two broad approaches (Fig. 5).
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Figure 5: Different approaches to AR pose tracking at scale.

Imagery-based Localization. Both ARKit and ARCore track
pose using terrestrial imagery. While we do not know the
details of their approach, other recent work has described a
commonly used approach for large-scale localization [52, 69]
that relies on Structure-from-Motion (SfM).

We begin by briefly describing SfM; [33] has more detail.
In its simplest form, SfM, given a sequence of images from
a camera, finds matching features between each camera pair,
and uses this to estimate the 3D positions of each feature
point in each image. These feature points form a localization
map. Then, given a query image, imagery-based localization
matches features in the image with features on the map, and
uses the 3D positions of those feature points to localize the
position of the query image.

Practical systems construct these SfM maps offline [52,
69], but because SfM is compute-intensive, they scale map
generation by tiling space and constructing SfM maps for
each tile separately. They perform localization either on the
mobile device, or offload localization to the cloud.

SfM from Aerial Mesh. As discussed in §3.1, UbiPose
exploits the broad availability of aerial meshes to enable ubiq-
uitous pose tracking. We designed a plausible approach for
UbiPose that builds upon SfM, consisting of the following
steps (top panel in Fig. 5): (a) Render images from different
viewpoints on the aerial mesh; (b) Use these rendered images
to obtain an SfM model; (c) Use the SfM model to estimate
the camera pose for AR pose tracking by matching camera
image features to those in the SfM map.

Unfortunately, this strawman does not perform well (§4):
it has high median and p95 error, for three reasons. First, the
quality of the SfM map depends on the positions on the mesh
of the rendered images in step 1. Second, SfM does not ex-
ploit the fact that pixels in the rendered images already have
associated 3D points (obtained from the aerial mesh); instead
it infers their 3D positions, and these estimates are likely to
increase error. Finally, and perhaps most important, images
from a camera are different from images rendered by a mesh,
since the latter represent a fundamentally different modal-
ity; sometimes, feature matching can find very few matches
between a camera image and a rendered image (Fig. 6).

Figure 6: Cross-modality matching between a camera image and
an image from an aerial mesh results in relatively few matches.

Figure 7: An image rendered from a terrestrial mesh (left) and from
an aerial mesh (right). Notice the distorted arch on the right side of
the aerial mesh image.

Mesh-Based Localization. MeshLoc [67] is a recent ap-
proach to localizing a camera image directly on a dense mesh.
It circumvents the problem identified in Fig. 6 by leveraging
the observation that modern neural local feature extractors,
such as SuperPoint [24], are robust enough to match camera
image features to features in rendered mesh images. At a high
level, MeshLoc works as follows (middle panel in Fig. 5):
(1) Extract features offline by rendering images from the

mesh. Obtain each feature’s 3D position from the mesh.
(2) Given a query image, match that image’s features with

those obtained from step 1, then use the 3D locations of
the matched features to localize the camera image.

MeshLoc uses state-of-the-art neural feature matching [74]
and achieves, on a terrestrial mesh, p95 position and orienta-
tion error of about 0.5 m and 5◦ respectively [67].

MeshLoc on an Aerial Mesh. We evaluated MeshLoc on
an aerial mesh. While it achieves low median error, it exhibits
high p95 position and orientation error (§4). Images from an
aerial mesh have visibly poorer visual quality than those from
a terrestrial mesh in some places (Fig. 7), resulting in fewer
matches. Because of the height at which they are captured,
aerial meshes have fundamentally lower resolution and can
contain distortions because they view vertical surfaces at an
angle (unlike terrestrial images).
UbiPose’s Approach. UbiPose builds upon these two ap-
proaches, but deviates from them in a fundamental way (bot-
tom panel of Fig. 5): rather than extract features offline, it
extracts features online entirely on the mobile device. More
precisely, using a coarse pose estimate, it extracts features
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from the mesh that are likely visible at the estimated pose.
In contrast, approaches described above (SfM, MeshLoc)
must search for features to match across all features ex-
tracted offline. This can result in false positives, especially for
aerial meshes. UbiPose’s design results in more robust feature
matching, because the coarse pose scopes feature generation.

UbiPose uses visual-inertial odometry (VIO) to continu-
ously obtain coarse pose estimates. VIO systems integrate
measurements from visual sensors, such as cameras, with
inertial sensors, such as accelerometers and gyroscopes, to
produce the pose of a camera relative to a starting or (anchor)
pose [45]. VIO is a mature technology and modern mobile
OSs have integrated highly optimized VIO capabilities in the
last few years [26].

UbiPose’s AR pose tracking works, at a high-level as fol-
lows. It uses, as the camera pose, the VIO estimate relative to
an anchor with known world coordinate position. VIO gener-
ates estimates at the frequency of the camera (30 fps). On a
longer time-scale (e.g., once a second), it repeatedly invokes
its localization pipeline to obtain a current estimate of the
camera pose in world coordinates. If it is able to obtain a
high quality pose estimate, it uses this as the VIO anchor for
subsequent frames.

3.3 UbiPose Tracker
Alg. 1 describes UbiPose’s (un-optimized) pose tracker. In-
voked periodically every T seconds (T =1 in our implemen-
tation) with the camera image captured at that instant as the
query image, it first (Line 2) obtains the current pose estimate
using VIO (§3.2). It treats this as a coarse pose estimate of
the mobile device; VIO can drift over time, so by itself it
is insufficient for accurate AR pose tracking. Moreover, as
described above, VIO by itself produces poses relative to an
anchor; in Line 2, PV is a global pose relative to some anchor.
We describe below how we obtain anchor poses.
Rendering. Line 3 renders K images from the aerial mesh
at the VIO estimated pose. We discuss the details of render-
ing in §3.5, but rendering is fast, requiring only 30 ms on a
mobile device. UbiPose renders K images, since rendering
a single image produces poor results (§4), both due to er-
rors in VIO, and because an aerial mesh has lower resolution
and is often distorted (Fig. 7) so it produces fewer matches.
UbiPose could have sampled K images at slightly different
angles relative to the VIO pose PV . This strategy increases the
effective field-of-view (FoV), but does not lead to increased
matches, since the query image has a fixed FoV, and these
extra images overlap little with the query image since their
orientation is different. UbiPose renders K images slightly
differently: one with the virtual camera at PV , one by moving
the virtual camera forward 1 m along the viewing direction,
and one by moving it backward by 1 m along the viewing
direction. Since the virtual camera resolution is fixed, this

Algorithm 1: Tracker
1 for each query image Q do
2 Compute the current pose estimate PV using VIO;
3 Use PV to render K image R1, . . . , Rk from aerial mesh;
4 Call localization pipeline L=Localizer (Q, [R1,...,Rk], /0);
5 if inlier ratio from L ≤ δL or relative error between PL from L and PV ≥

δP then
6 Accept PV and return;
7 else
8 Accept PL and return;
9 end

10 end

Algorithm 2: Localizer
1 Function Localizer (Query image Q, List of rendered images R, Initial

correspondences C)
2 if C is not None then
3 Correspondences=C;
4 else
5 Correspondences=[];
6 end
7 Invoke Extract Q and each rendered image in R;
8 for each rendered image r in R do
9 Invoke Match between Q and r;

10 Add new 2D to 3D correspondences from matches based on
OpenGL depth map;

11 end
12 Run PnP + RANSAC with Correspondences and return pose estimation

with statistics;
13 end

results in more detail in the rendered image and/or additional
features. Even though rendering is fast, K should be as small
as possible to minimize resource usage; UbiPose uses K = 3.
This strategy, empirically, produces accurate tracking while
keeping resource usage within limits.
The Localizer. Line 5 of Alg. 1 invokes a localizer which
returns a pose estimate based on the rendered images. Ubi-
Pose accepts this pose estimate based on its quality. One test
for quality is the inlier ratio, the fraction of feature matches
that correspond to the most likely pose as determined by
RANSAC [30], as described below. Another is proximity to
the VIO pose. When the inlier ratio is higher than a threshold
δL and the pose estimate is within a distance threshold δP,
UbiPose accepts the estimate, and uses this as an anchor for
subsequent VIO estimates.

The localizer (Alg. 2) is novel: it extracts features online
(bottom panel of Fig. 5). Line 8 invokes a feature extraction
module Extract on each of the rendered images, as well as
the query image. Our current implementation uses Super-
Point [24], a robust neural feature extractor. Line 9 matches
features between the query image and each rendered image
using a feature matching module Match. Our current imple-
mentation uses SuperGlue [74], another neural model for
feature matching. UbiPose can be easily extended to use other
neural network models for feature extraction and matching.

Finally, Line 12 estimates the pose using PnP [49] and
RANSAC [30]. This latter algorithm returns an inlier ratio,
which estimates what fraction of matches do not correspond
to outliers (often resulting from noise). UbiPose uses this to
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Type Approach Render Extract Match Localize
Full Basic (Alg. 1) 3 4 3 1
Fast (Accept) Lift-and-Project 1 2 1 1
Fast (Reject) Early-Exit 1 2 1 1
Full (Optimized) Fused-Match 3 4 2 2

Table 2: Summary of optimizations in the optimized tracker.

estimate the quality of the pose estimate, as described above.
Using inlier ratios as an estimate of localization quality is
fairly standard in the localization literature [14, 22].
A hybrid design. VIO is fast, but drifts over time. The lo-
calizer produces good accuracy, but doesn’t allow per-frame
operation. UbiPose uses its localizer to periodically generate
an accurate anchor, and uses VIO to calculate poses relative
to the latest anchor in real-time.
Accuracy and Performance. As we show in §4, this ap-
proach results in accurate AR pose tracking. Relative to prior
approaches, it is novel in rendering and extracting features
online using VIO pose estimates. UbiPose’s approach is neces-
sary because straightforward extensions2 of prior approaches
to aerial meshes do not produce accurate tracking (§4.3).

Unfortunately, the tracker and localizer (Algs. 1 and 2) are
resource hungry. Specifically, on a modern mobile GPU (the
NVIDIA Jetson Xavier NX [62]) neural feature matching and
extraction using SuperPoint and SuperGlue require approxi-
mately 35 and 150 ms each per invocation, and Alg. 2 invokes
the former 4 times, and the latter 3 times. The next section
describes how UbiPose optimizes the localizer to reduce Ubi-
Pose’s resource footprint, essential both to reduce the latency
of pose tracking and to reduce power consumption.

3.4 The Optimized Tracker
Overview. Tbl. 2 summarizes these optimizations. Two of
these, Lift-and-Project and Early-Exit, represent fast paths
for acceptance and rejection of pose estimates, respectively.
Fused-Match optimizes the basic tracker when the fast paths
do not lead to a conclusive acceptance or rejection.

These optimizations work together as follows:
(1) UbiPose runs the query image Q on Lift-and-Project. If

that produces a good pose, it accepts that and returns.
(2) If not, it runs Early-Exit, which reuses computations from

Step 1, but determines if pose estimate is likely to be bad.
(3) If it does not Early-Exit, UbiPose uses Fused-Match to

reduce Match invocations.
Lift-and-Project. This optimization (Fig. 8) reuses matched
features from previous camera frames.

Key Idea. Consider a camera image ci. Suppose some fea-
ture f matched a feature f ′ in a rendered image (using Match).
From this match, UbiPose can estimate the 3D position of f
(it lifts f into 3D space). Now, consider a camera image c j

2We also tried constructing an SfM model with more robust learned features
from SuperPoint. This gives low median but very high p95 errors (§4.3).

Figure 8: Illustration of the Lift-and-Project optimization.

captured a short while later. UbiPose projects f onto a feature
f ′′ in c j using the VIO estimates when ci and c j we captured.
This exploits the accuracy of VIO over short timescales. Our
key insight is that f ′′ can be used to match features in c j using
very cheap feature-matching (e.g., nearest neighbor match-
ing [58]), since f ′′ is of the same modality (i.e., from a camera
image) as features in c j. The following paragraphs describe
this approach in detail.

The Lift Cache. At the core of Lift-and-Project is the Lift
Cache, a cache of lifted features and their corresponding 3D
positions from recent camera images. Initially, this cache is
empty. To fill this cache, UbiPose follows a Full path (Tbl. 2)
to obtain a pose estimate. As part of this path, it obtains all the
inlier feature matches from RANSAC (e.g., Line 5 in Alg. 1).
It stores all inlier feature vectors and their corresponding 3D
positions, as well as the current VIO pose in the lift cache.

Using the Lift Cache. Alg. 3 (and Fig. 8) describes how
UbiPose uses the Lift cache once populated. Given a query
image Q, it renders (Line 3) a single image (unlike 3 images
in Alg. 1), extracts features from Q and the rendered image,
and matches them (Line 4). The goal of this step is to lift the
matched 2D features in Q to 3D (Line 5), leveraging the fact
that every pixel in the rendered image has an associated 3D
position obtained from the mesh. 3

Next, the algorithm projects each cached feature to Q, using
the VIO pose obtained when storing the feature (Line 6).
These projected features, and the lifted features in Line 5 are
all from camera images. Instead of using Match, UbiPose
uses a much cheaper nearest neighbor match [58] (Line 7)
and gets a localization estimate for these features using PnP
and RANSAC (similar to Line 12 in Alg. 2).

If it decides to reject the pose estimate (using the same
criteria as in Line 5 of Alg. 1), UbiPose proceeds to check if
it should exit early, described below.

3SLAM algorithms track map points in a similar way. However, they algo-
rithms need to triangulate to find the 3D positions of map points, but UbiPose
can get these directly from the aerial mesh.
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Algorithm 3: Optimized Algorithm
1 for each query image Q do
2 Compute the current pose estimate PV using VIO;
3 Use PV to render one image R1 from aerial mesh;
4 Run Extract on Q and R1 and Match on the pair;
5 Lift features in Q from the match;
6 Project matches M from the Lift Cache;
7 Run nearest-neighbor search to find matches between M and Q;
8 Get localization estimate L on matched features;
9 if inlier ratio from L ≥ δL and relative error between PL from L and Pv ≤

δP then
10 Accept PL and return;
11 Add inliers to the Lift Cache;
12 Run cache management operations;
13 else
14 Move to test for Early-Exit;
15 end
16 end

If, however, it accepts the pose estimate, this fast path
terminates (Line 10), requiring only one localization, one
render, two extract and one match operation (Tbl. 2). Before
exiting, it adds the inlier matches to the Lift Cache (Line 11)
and performs cache management operations (Line 12).

Managing the Lift Cache. UbiPose evicts points in the
cache that have not recently contributed to matches. For each
feature point in the cache, it keeps track of how many sub-
sequent camera images the point was visible in, and in how
many of those it contributed to an inlier match. It evicts points
whose ratio of contribution count to visibility count is below
a certain threshold.
Early-Exit. Visual feature matching works well in environ-
ments with sharply defined static structures in the environ-
ment (such as buildings). If however, at some locations, such
structures are occluded (e.g., due to a tree), it may be difficult
to get good visual localization. With aerial meshes updated
on the timescale of months [35], feature matching may also
not work well if the environment has changed (e.g., if trees
have shed leaves, or been cut down). In these cases, UbiPose
can avoid work by short-circuiting localization.

Our key insight is that UbiPose can reuse computations in
Lift-and-Project to exit localization early if it is unlikely to be
able to localize at that location. The inlier ratio, returned by
RANSAC, is a signal for the quality of localization. In previ-
ous steps, a high inlier ratio signals a high quality localization.
In Early-Exit, if the inlier ratio returned in Line 8 of Alg. 3
is below another threshold δE , UbiPose uses the VIO pose
estimate and returns without proceeding further. Early-Exit
is conservative, since Line 8 uses matches both from the Lift
Cache and from Match on the single rendered frame.

Thus, when UbiPose decides to Early-Exit on a query im-
age Q, it re-uses the one render, two Extract, one Match and
one localization operation performed for Lift-and-Project (i.e.,
it incurs no additional operations).
Fused-Match. If Lift-and-Project does not produce an accept-
able pose estimate, and UbiPose does not Early-Exit, it can

try to localize using the basic tracker in Alg. 1. To do so, it
would invoke the following steps:
(1) Render images R2 and R3 and invoke Extract on them.
(2) Invoke Match pairwise on Q and R2 and R3.
(3) Feed these and the matches from Line 4 and Line 7 to

the localizer, and decide whether to accept the resulting
estimate or not (using the criteria in Line 5 of Alg. 1).

Because Match uses neural feature matcher like SuperGlue,
it is compute-intensive, so reducing the number of invoca-
tions in Step 2 above can reduce latency and resource usage.
Fused-Match is an optimization that reduces the two Match
invocations in Step 2 to one. It leverages the fact that the
exact 3D positions of all features can be obtained from the
aerial mesh. So, Fused-Match projects all features obtained in
Step 1 to a single image plane, then runs Match once on that
image (Step 2). This saves a Match invocation, but the way
we have structured our optimizations, Fused-Match requires
an additional invocation to the localizer relative to Alg. 1.
Localization is faster than neural feature matching, so this
results in higher overall efficiency.

Naïvely fusing feature points can result in multiple fea-
tures from different images being projected to the same or
nearby pixels. This can adversely impact Match accuracy,
since matching relies on feature uniqueness. Fused-Match
filters out a feature if it has already projected a feature to a
nearby pixel. This results not only in more accurate matching,
but also faster matching, since matching takes time propor-
tional to the number of features.

3.5 Other Details

Obtaining Initial Pose. To produce a pose estimate in world
coordinates, VIO needs an anchor. When an app initiates AR
pose tracking, UbiPose needs to generate an initial anchor
pose. It could have used GPS position and heading, but GPS
can be erroneous in obstructed environments. Instead, it uses
visual localization on the aerial mesh to obtain the initial
anchor. Through relatively simple coordinate transformations,
whose details we omit, it is possible to convert aerial mesh
coordinates to world coordinates.

To obtain the initial anchor, UbiPose uses the GPS and
heading from the mobile device at the location at which the
user initiates AR pose tracking to render five images at angles
of 15◦ from the mesh, each with a 30◦ field-of-view. It pro-
ceeds to obtain a pose estimate using steps similar to Alg. 1:
invokes Extract on all images, and Match on every pair, then
runs the localizer. If the localizer returns a low inlier ratio,
UbiPose rejects the pose, and repeats with another camera
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image.4 This approach is an order of magnitude more accu-
rate than simply using the GPS position, and UbiPose finds a
good initial pose within 2-3 frames on average(§4).
Model compression. The state-of-the-art neural models Ubi-
Pose uses for extraction and matching, SuperPoint and Super-
Glue, are too resource-intensive for the mobile device. We
converted both models to a TensorRT [63] compatible format
(as currently available, they use PyTorch [68] and the ONNX
Runtime [25]). Using TensorRT, we quantized them to FP16
precision and used kernel auto-tuning to optimize them for
our target hardware, the Jetson NX board. These two opti-
mizations enables UbiPose to run both models efficiently on
the mobile platform without significant lose of accuracy.
Rendering. To render an image from a mesh, UbiPose uses
OpenGL, whose renderer takes the size of the image desired.
The renderer also uses the mobile device camera parameters
(the extrinsic and intrinsic matrices) to render images with
content, quality and perspective similar to the camera image.
Rendered images use ambient light on the mesh, with shadows
disabled, in order to properly capture texture and color. All
of these help increase the efficacy of feature extraction and
matching. To achieve fast rendering, we re-implemented a
Python renderer [54] in C++ and exploited the mobile GPU.

4 EVALUATION
We quantify UbiPose’s performance using real-world traces.

4.1 Methodology
Implementation. Our implementation of UbiPose uses
OpenCV [15] for image processing, OpenGL [90] for ren-
dering, TensorRT [63] to compress models and Colmap [76]
to estimate poses from 2D-3D correspondences. Our total
implementation is over 7500 lines of C++ code.
Mobile Platform. Our implementation runs entirely on an
NVIDIA Jetson Xavier NX (6-core 64bit ARM CPU and
384-core Volta GPU) and we use this for all our experiments.
Many mobile devices today have hardware comparable to,
or better than, the Jetson NX. For example, Apple’s Vision
Pro [7] headset has an Apple M2 processor [6], which runs at
a higher clock rate and contains more cores than the Jetson.
Trace Collection. We developed a simple data collection app
on iOS, which allows us to collect traces of the camera im-
ages (at 1920×1440 resolution), the VIO poses of the camera,
the camera intrinsics and extrinsics, as well as poses of the
ARGeoAnchor (if the ARKit’s GeoTracking service is avail-
able). To capture real-world image quality, we collected all
images using off-the-shelf iPhones. We used SensorLog [77]
to collect other sensor data including GPS and heading in-
formation. We physically visited each location, collected the
data and generated ground-truth using SfM (described below)

4This runs during session initialization, which can take several seconds [8].

Tr- City Type UbiPose ARKit
ace pos. (m) orien. (◦) pos. (m) orien. (◦)
A San Jose

Streetside
0.5 (1.4) 0.7 (1.2) 1.4 (2.0) 0.5 (1.1)

B San Jose 0.7 (0.9) 1.0 (1.8) 0.7 (1.1) 0.6 (1.4)
C Pittsburgh 0.6 (0.9) 0.8 (1.8) 2.0 (3.7) 3.6 (5.2)
D Los Angeles

University
0.5 (0.9) 0.8 (1.5) 0.7 (1.4) 0.5 (1.3)

E Los Angeles 0.7 (1.7) 1.0 (2.0) 0.7 (1.7) 0.8 (2.3)
F Los Angeles 0.4 (1.1) 0.8 (1.7) 1.1 (4.6) 1.2 (3.0)
G San Jose Apartment 0.5 (0.9) 0.9 (1.9) 0.5 (0.9) 0.9 (1.4)

Table 3: Pose accuracy at locations where ARKit is available.

on the traces. Evaluating each trace took several hours to a
day, depending on trace length.
Trace Locations. We used this app to collect traces at about
17 different locations in three different metropolitan areas Los
Angeles, CA, San Jose, CA and Pittsburgh, PA in the U.S.
In these areas, we collected traces at university campuses,
shopping centers, streets, corporate campuses, and apartment
complexes by walking in these areas with the camera held
forward-facing in landscape mode. Our evaluation focuses
on diversity in geography (3 cities) and location types (5). In
less than half of these locations (at least one of which was
off-street), ARKit was available. All our evaluations use these
traces, or a subset thereof. For the areas covered by our traces,
the mesh sizes ranged from 30 to 160 MB, with an average
of 65 MB. These are well within storage limits on modern
mobile devices.
Aerial Meshes. We extracted 3D meshes from Google
Earth [38] using Chrome [37], loaded them into Blender [12]
using MapsModelImporter [55], and then exported them
in a waveform format with texture mapping (.obj and .mtl
format).
Metrics. We evaluate UbiPose using two primary metrics:
the error in meters of the estimate camera position and the
error in degrees of its orientation. For each trace, we compute
the median and p95 values for each metric across all frames
for which UbiPose invokes Alg. 3. Additionally, in some
experiments, we also quantify UbiPose’s median and p95
latency of estimating the pose of a frame, and the median
and p95 power draw during the processing of a trace. For the
latter, we leverage built-in power tracing in the NX.
Estimating Accuracy. To evaluate accuracy, we need pose
ground-truth. Possible approaches to generating pose ground-
truth include GNSS-RTK, OptiTrack and LiDAR-SLAM. In
dense built environments targeted by AR applications, RTK
can have high error due to reflections. Optitrack[65] is more
suitable for indoor settings [66]. LiDAR-SLAM can drift by
tens of centimeters and requires calibrating the camera and
the LiDAR, which can introduce more measurement error.

Instead, we use pseudo ground-truth generated using SfM.
Often used in the localization literature [13, 72], this method
may not perfectly estimate absolute error, but enables us to
compare UbiPose with ARKit against a common reference.
Pseudo ground-truth can be susceptible to local minima [13].
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To overcome this, Brachmann et al. [13] suggest choosing
evaluation thresholds large enough that the variation in the
pseudo ground-truth is less likely to affect the measured per-
formance. We choose p95 to account for such variations.

UbiPose Accuracy. To evaluate the accuracy of UbiPose,
we generate an SfM model of the trace using Colmap. This
produces a set of camera poses for each image and a point
cloud. We align this point cloud to the aerial mesh using
iterative closest point, ICP [11]. This enables us to map the
SfM’s image poses to the mesh’s coordinate system, and
hence to evaluate the accuracy of UbiPose’s poses against the
ground truth provided by the SfM model.

ARKit accuracy. We use the same SfM model to estimate
ARKit accuracy as well, but need a way to transform the
camera pose exposed by ARKit’s pose tracker (called Geo-
Tracking). The tracker does not expose camera pose in world
coordinates, but instead provides the pose of the geo-anchor
(§2) and the camera pose in the AR session coordinates. To
address this, we first calculate the relative pose between the
geo-anchor and the camera at each instant. Then, we align
the first image’s pose in the trace with the same image in the
SfM model. This enables us to transform each ARKit pose
estimate in SfM space, and we can estimate error.

4.2 ARKit Comparison
We first compare UbiPose against ARKit using 17 traces
whose average duration is 259 s, ranging from 129 s to 346 s.
ARKit is available5 at some locations and not in others, so we
discuss these separately.
Locations where ARKit is available. Tbl. 3 shows the results
of seven traces, labeled A-G, at locations where ARKit was
available. These locations span public streets in cities (A-C),
universities (D-E), and a public street through an apartment
complex (G). One of these, F, is in a pedestrian-only zone on
a university campus, evidence of terrestrial imagery collection
using pedestrians or bicycles.

UbiPose achieves about 0.5 m median and a little over 1 m
p95 positioning error. Its median orientation error is, in most
cases, 1◦ or less, and its p95 orientation error ranges from
1.2◦ to 2◦. UbiPose’s performance is not strongly correlated
with which city it was collected in, and where. For example,
across traces D-F, in a University in Los Angeles it has both
the lowest and one of the highest median positioning errors.

In contrast, ARKit exhibits median positioning errors of
0.5 m to almost 2 m in some cases, and p95 positioning errors
well over 1 m. Its orientation errors, however, are low: with
a couple of exceptions, the median (p95) orientation error is
0.5-0.9◦ (less than 2◦) in many cases.

5We use this as shorthand for “ARKit’s GeoTracking capability is available”.

Trace City Type pos. (m) orien. (◦)
H San Jose Corporate 0.3 (0.6) 0.3 (0.7)
I San Jose Apartment 0.4 (1.1) 0.9 (1.9)
J Los Angeles Shopping 0.6 (1.2) 0.7 (1.2)
K San Jose Shopping 0.4 (1.0) 0.6 (1.6)
L San Jose Shopping 0.3 (1.1) 0.8 (1.1)
M Los Angeles University 0.6 (0.9) 0.8 (1.3)
N Los Angeles University 0.3 (0.5) 1.0 (1.8)
O Los Angeles Apartment 0.5 (0.9) 0.8 (1.3)
P Pittsburgh University 0.6 (0.9) 0.7 (0.9)
Q Pittsburgh University 0.7 (1.0) 0.4 (0.7)

Table 4: UbiPose accuracy where ARKit is unavailable.

Tbl. 3 also shows in bold, for each trace, which approach
has better position and orientation accuracy. Generally, Ubi-
Pose’s positioning accuracy is better than ARKit’s, and its
orientation accuracy is slightly worse. ARKit’s better orien-
tation results may be a result of better fusion of its inertial
sensors; UbiPose can be extended to exploit these sensors,
and we have left this to future work.

There are some exceptions. In G, ARKit is better both
in position and orientation. In C and F, UbiPose is better
than ARKit in both. In these, ARKit indicated that it had low
confidence in its pose estimates. For all three of these cases,
the difference comes down to the quality of the imagery: in G
the mesh quality is poor, and in the other two, it is better than
the terrestrial imagery (we are not sure why, but we note that
F is at an off-street location on campus, so imagery there was
likely obtained using pedestrians). This suggests that a hybrid
approach which matches both aerial and terrestrial imagery
might give good uniform AR pose tracking performance.

Overall, we conclude that, at least for the traces we have
studied, UbiPose’s accuracy is comparable to that of ARKit.
Locations where ARKit is not available. Tbl. 4 shows Ubi-
Pose’s accuracy at locations where ARKit is not available.
These span all three of our cities, and are from a range of
locations: corporate and university campuses, apartment com-
plexes, and outdoor shopping areas.

In these locations, ARKit cannot track pose, but UbiPose
is able to do so uniformly well. Its median positioning error
ranges from 0.27 m to 0.61 m and its p95 positioning error
is less than 1.2 m. Its median orientation error ranges from
0.27◦ to almost 1◦, and its p95 orientation error is below 1.8◦.
These are qualitatively consistent with UbiPose performance
in Tbl. 3, as one might expect: UbiPose accuracy shouldn’t
correlate with where terrestrial imagery is available.

In these locations again, accuracy does not seem to corre-
late with city or type of location, at least from our samples.
Moreover, position accuracy is not a predictor for orientation
accuracy: N has low positioning error, but high orientation
error, H has low error along both dimensions. Accuracy de-
pends entirely on the mesh quality, which is likely a function
of when, and from what height it was collected. It is also a
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Trace SIFT+NN SP+SG
pos. (m) orien. (◦) pos. (m) orien. (◦)

D 31.1 (91.7) 105.4 (172.7) 0.7 (52.3) 1.4 (130.8)
H 49.9 (179.0) 132.7 (176.8) 0.4 (66.3) 0.6 (101.5)

Table 5: Pose Accuracy by SfM from Aerial Mesh

strong function of the degree to which the environment has
enough visual features (obtained from street markings, build-
ings etc.) to enable matches. This is true for ARKit as well; in
wide open spaces, both ARKit and UbiPose may not be able
to track pose as accurately.

Overall, these results suggest that UbiPose can increase
coverage of AR pose tracking to locations where ARKit is not
available, such as those in Figs. 2 and 3. More important, it
can do so without impacting accuracy of tracking in those lo-
cations, an important consideration for app developers whose
users expect uniform quality of experience.

4.3 Comparison With Other Approaches

SfM from Aerial Mesh. This builds an SfM model from ren-
dered aerial mesh images, and localizes a query image using
the SfM model (§3.2). SfM usually uses SIFT features and
nearest-neighbor matching (SIFT+NN). Because SuperPoint
features and SuperGlue matching (SP+SG) perform better on
meshes [67], we built an SfM model that uses these.

Tbl. 5 depicts results from this experiment. In this experi-
ment, unlike the prior one, we present the results of image lo-
calization alone. In other words, we do not use VIO estimates
to track pose. We do this to understand whether UbiPose
could have used this approach instead of its localizer.

SIFT+NN exhibits unacceptable performance (Tbl. 5), with
median positioning error of over 30 m, and median orientation
error of 90◦. SIFT features do not generalize to aerial mesh
rendered images, since these have a very different visual
appearance that camera images (§3.2). On the other hand,
SP+SG has very low median position and orientation error,
but its p95 errors are completely unacceptable (over 50 m and
over 100◦ respectively). As discussed earlier, this results from
distortions and low resolution of aerial meshes.
MeshLoc on Aerial Mesh. MeshLoc performs visual local-
ization by extracting features offline from a terrestrial mesh,
then matching the query image online against those features.
In this section, we evaluate a MeshLoc-like approach, but use
an aerial mesh to generate features.

Tbl. 6 shows the accuracy of localizing a query image
purely using MeshLoc. The table shows results for traces
in which MeshLoc performance deviates significantly from
UbiPose. Thus, for traces not listed in Tbl. 6, MeshLoc has
accuracy comparable to UbiPose’s localizer.

MeshLoc compares well with UbiPose in median position
and orientation error across all of these traces. However, its

Trace City UbiPose MeshLoc
pos. (m) orien. (◦) pos. (m) orien. (◦)

A San Jose 0.5 (1.4) 0.7 (1.2) 0.8 (4.7) 0.8 (3.6)
D Los Angeles 0.5 (0.9) 0.8 (1.5) 0.5 (0.9) 0.8 (2.2)
E Los Angeles 0.7 (1.7) 1.1 (2.0) 0.6 (3.6) 1.1 (4.6)
F Los Angeles 0.4 (1.1) 0.8 (1.7) 0.4 (1.2) 0.9 (4.8)
G San Jose 0.5 (0.9) 0.9 (1.9) 0.7 (7.6) 1.9 (8.2)
H San Jose 0.3 (0.6) 0.3 (0.7) 0.3 (0.6) 0.3 (0.8)
J Los Angeles 0.6 (1.2) 0.7 (1.2) 0.7 (3.7) 1.1 (5.7)

Table 6: Accuracy comparison between UbiPose and MeshLoc.
Best alternative in bold.

p95 errors are generally worse, and in some cases substan-
tially so. For example, in G, it has a p95 position error of
over 7 m and an orientation error of over 8 m. Other traces
where both of these values are high include J, A and E. On
a terrestrial mesh, by contrast, its p95 position error is under
0.5 m [67]. As discussed in §3.2, we attribute this to the lower
resolution of, and distortions in, the aerial mesh. To be robust
to these, UbiPose renders multiple mesh images for feature
extraction and matching at the estimate pose.

4.4 Quantifying The Optimized Tracker
Fast Path Invocations. Tbl. 7 shows the statistics, across all
our traces, of the percentage of frames which benefited from
Lift-and-Project, and from Early-Exit. Both optimizations are
crucial for UbiPose. Over 70% of frames across all traces, and
over 90% of frames in one of them (I), use Lift-and-Project.
A smaller percentage of frames on average (about 7%) use
Early-Exit, but in one of our traces B, it is used 46% of the
time. Thus, while Lift-and-Project is uniformly useful, Early-
Exit is absolutely critical for at least one of our traces. As we
show below, these fast path invocations result in lower latency
and lower power consumption.
Impact of Optimizations. Tbl. 8 compares UbiPose to the
basic tracker in Alg. 1.

Accuracy. In theory, our optimizations can potentially
degrade accuracy. For example, Lift-and-Project projects
matches from previous frames assuming short-term VIO
pose stability, which can introduce error if that assumption is
violated. However, at least for two of our traces (representing
traces with ARKit and traces without), relative to the
un-optimized tracker, UbiPose has comparable median and
p95 position and orientation errors.

Latency. To measure the latency, we instrumented the C++
implementation of UbiPose to record the time required for
pose tracking for each image. UbiPose’s median latency per
frame is 2× smaller that of the un-optimized version. Ubi-
Pose currently localizes camera frames every second, so our
optimizations free up resources for other tasks on the mobile
device. In contrast, without these optimizations, the device
would be busy most of the time running UbiPose. UbiPose’s
p95 latency is higher than the un-optimized tracker because of
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Lift-and-Project Early-Exit
Median 73.2 % 2.7 %
Average 73.9 % 7.2 %
Min 31.8 % 0 %
Max 91.5 % 46.9 %

Table 7: Percentage of frames that benefit from optimizations.

its additional localizer invocation (§3.4). Individually, the me-
dian latenciy for Lift-and-Project is 220ms, Early-exit is 90ms,
and Fused-Match is 420ms. However, the latency speed-ups
of UbiPose’s optimization cannot be attributed to individ-
ual modules since they rely on each other (Early-Exit and
Fused-Match rely on Lift-and-Project).

Power consumption. Because we target mobile deploy-
ments, power usage is an important factor to consider. Ubi-
Pose consumes 5.7W (median) and 6.9W (p95) both of which
are lower than the basic algorithm’s power consumption of
7W (median) and 7.8W (p95). For context, the iPhone 12 Pro
Max’s GPU has comparable average power consumption [32].
UbiPose’s improvements come from the Lift-and-Project op-
timization that reuses feature points, thereby reducing the
number of neural network model inferences required.

4.5 Other Results
Memory footprint UbiPose needs 700MB for the mesh,
1GB for TensorRT-generated NN models, and 20MB working
memory. These are well within the Jetson’s 8GB RAM.
Initial Pose. Tbl. 9 displays the accuracy of initial pose es-
timation (§3.5). For context, it also shows the GPS error at
that location. UbiPose’s initial pose is 5× more accurate than
GPS location, and it finds an acceptable initial pose within
2-3 frames on average, with a p95 position error of 2.3 m and
p95 orientation error of 2.5◦.
One-shot Neural Matchers. Recent fast one-shot neural
matchers [20, 81] perform Extract and Match in one step, and
are plausible candidates for UbiPose’s localizer. However,
LoFTR [81], when used for visual localization using an aerial
mesh, incurs a position error of 10 m (70 m) and orientation
error of 22.9◦ (145◦) on trace F (and comparable error on trace
H, omitted for brevity), too high to be useful for UbiPose.
Generalizing to other Cameras. Our experiments use iPhone
cameras. AR headsets have qualitatively different cameras;
for instance, the Hololens has a grayscale camera. To test
whether UbiPose generalizes to these, we collected a trace
using a grayscale stereo camera with lower resolution and
different calibration and auto-exposure algorithms. Unmodi-
fied UbiPose achieves, on this trace, a position error of 0.2 m
(0.5 m) and orientation error of 0.4◦ (1.7◦). This result sug-
gests that UbiPose may be able to generalize to AR headsets.

5 LIMITATIONS AND FUTURE WORK
Mesh Availability. The degree to which UbiPose enables
ubiquitous pose estimation depends on mesh availability,

Figure 9: Aerial meshes lack texture comparing to terrestrial
meshes, resulting in less matches.

Figure 10: Terrestrial meshes show better accuracy than aerial
meshes.

which in turn depends on depends on mesh providers. In
UbiPose’s experiments, we used the aerial mesh from Google
Earth [38]. Prior work [10] shows that Google Earth covers
97% of U.S.’s and 86% of Canada’s metro areas [18, 39]. In
some suburban or rural areas, Google Earth only provides
satellite images (2D) but not meshes (3D). In these, UbiPose
will not be able to provide accurate pose estimates, but neither
can terrestrial imagery [59].
Mesh Freshness. The freshness of the aerial mesh can impact
the accuracy of pose estimation. We have observed in some
of our experiments that stale meshes containing trees with
or without leaves, or new construction, can result in fewer
matched features between camera images and the mesh ren-
dered image, leading to degraded accuracy or even localiza-
tion failure (§3.4). Localization using terrestrial imagery can
be similarly impacted by stale images. One might assume that
terrestrial imagery would always have higher freshness, but
anecdotal evidence suggests otherwise. In one of our evalua-
tion locations, the aerial mesh was from 2022, the street-level
imagery from 2016. In another, street-level imagery was from
Nov 2022, aerial from May 2022.
Quality of aerial-mesh. While our experiments use the high-
est quality mesh available from Google Earth, we find that
aerial meshes have poorer quality than terrestrial meshes. Our
techniques in §3 essentially compensate for this quality dif-
ference (§3.3). If higher quality aerial meshes are available
in the future, UbiPose might be able to achieve accurate, and
cheaper, pose estimation.

To illustrate the quality differences between aerial and ter-
restrial meshes, we took a terrestrial mesh from Aachen, Ger-
many (used by MeshLoc [67]) and obtained an aerial mesh
for the same location. By analyzing these, we found three
factors that impact UbiPose’s localization accuracy. Aerial
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Trace UbiPose Basic Algorithm (Alg. 1)
pos. (m) orien. (◦) power (mW) latency (ms) pos. (m) orien. (◦) power (mW) latency (ms)

A 0.3 (0.6) 0.3 (0.7) 5670 (6604) 364 (755) 0.3 (0.6) 0.3 (0.9) 7097 (7845) 672 (723)
H 0.5 (0.8) 0.8 (1.4) 5711 (6951) 366 (783) 0.5 (1.2) 0.8 (1.2) 6892 (7577) 681 (745)

Table 8: Latency of UbiPose in pose tracking with optimized and basic algorithm

Trace GPS Error (m) Initial Pose Error
pos. (m) orien. (◦)

D 3.3 (8.9) 0.6 (1.3) 0.9 (1.7)
H 12.1 (20.1) 0.6 (2.3) 0.5 (2.5)

Table 9: Initial pose accuracy of UbiPose

images have a different perspective than a mobile device cam-
era image; this negatively impacts feature correspondence.
Because aerial images are captured from a distance, aerial
meshes often lack texture, resulting in poorer feature match-
ing, as shown in Fig. 9. For a similar reason, the 3D positions
of points in the aerial mesh can be inaccurate, relative to a ter-
restrial mesh (Fig. 10). This reduces the accuracy of PnP [49]
(§3.3).
Other Designs and Extensions. Future work can explore of-
floading computation from lower-end mobile devices to edge
and/or cloud [41, 89] to maintain performance SLOs. We have
left it to future work to integrate our implementation into iOS
and Android. Apple doesn’t provide guidance on how to run
and optimize third-party ML models on Apple’s neural en-
gine [40]. Android’s TensorFlow Lite quantization tools [84]
don’t improve SuperGlue performance in our experiments,
and TensorRT, which we rely upon for model compression,
doesn’t support Apple hardware as a back-end. Finally, both
UbiPose and ARKit estimate pedestrian-carried camera poses;
localization of aerial (e.g., drone) camera images [21] is an in-
teresting direction for future work. Future work can also train
feature extractors and matchers for cross-modality matching,
detect VIO drift to optimize visual localization invocations,
and explore extensibility to AR headsets.

6 RELATED WORK
Sparse feature-based visual localization. Existing visual
localization approaches [42, 50, 69, 72, 73, 76, 82] repre-
sent scenes using sparse features [21], often in the form of
Structure-from-Motion (SfM) point clouds containing local
features extracted from database images. These approaches
use different feature extraction (e.g., SIFT [51], ORB [71]
and SuperPoint [24]) and matching techniques (e.g., nearest
neighbor [58], SuperGlue [74] and D2-Net [29]). As we show
in §4 they are unsuitable for use with aerial meshes. UbiPose
uses multi-view matching techniques differently than the ex-
isting approaches [19, 53]; it matches feature points across
two modalities and does not need to triangulate to find the 3D
positions of the feature points.
Mesh and Dense 3D model based localization. Land-
scapeAR [17] estimates pose to within 100 m using digital

elevation models (DEMs). Zhang et al. [93] use learned
features and view synthesis to generate reference poses
for a given query image, but this takes 10-20 s per frame.
MeshLoc [67] uses terrestrial meshes for neural feature
extraction and matching. UbiPose obtains high pose accuracy
in areas where terrestrial meshes may not be available and
can run fast on mobile devices.
SLAM based visual localization. SLAM [28] simultane-
ously estimates pose and builds a 3D map of an environment.
Visual SLAM [19], like SfM, builds sparse 3D feature maps
of the environment. If these maps were widely available, they
could potentially enable ubiquitous pose tracking, but would
have the same drawback as terrestrial imagery: at scale, they
could only be collected using vehicles [1]. UbiPose, using
aerial meshes, enables wider coverage for AR pose tracking.
Other camera pose estimation and tracking approaches.
PoseNet [46] is a CNN-based 6-DoF pose estimator. A line
of work has improved upon PoseNet using various tech-
niques [16, 27, 57, 78, 79, 86–88]. Even though these tech-
niques can estimate absolute pose estimation quickly, their
accuracy is worse than approaches, like UbiPose, that ex-
ploit imagery or dense structural models of the environment.
Other work explores estimating pose leveraging moir’e pat-
terns’ high sensitivity to the camera’s pose changes [60], and
improving pose tracking using inertial sensors [2, 75, 91].

7 CONCLUSIONS
UbiPose extends coverage of AR pose tracking on mobile
devices to areas where terrestrial imagery is not available. It
uses aerial meshes, a novel tracker and localizer that uses
VIO estimates to render images from the aerial mesh on the
mobile device, then performs feature extraction and matching.
It uses several optimization to reduce the high cost of neural
extraction and matching, and achieves accuracy comparable to
ARKit in areas where that is available. In off-street locations
without terrestrial imagery, UbiPose is able to accurately track
pose while ARKit cannot.
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