
Cooperative Infrastructure Perception

Fawad Ahmad*1, Christina Suyong Shin*2, Weiwu Pang*2, Branden Leong2, Pradipta Ghosh3, and Ramesh Govindan2

1Rochester Institute of Technology, Rochester, NY, USA
2University of Southern California, Los Angeles, CA, USA

3Meta, Menlo Park, CA, USA

fawad@cs.rit.edu, {cshin956, weiwupan, branden, ramesh}@usc.edu, iampradipta@meta.com

Abstract—Recent works have considered two qualitatively
different approaches to overcome line-of-sight limitations of
3D sensors used for perception: cooperative perception and
infrastructure-augmented perception. In this paper, motivated
by increasing deployments of infrastructure LiDARs, we explore
a third approach – cooperative infrastructure perception. This
approach generates perception outputs by fusing outputs of
multiple infrastructure sensors, but, to be useful, must do so
quickly and accurately. We describe the design, implementation
and evaluation of Cooperative Infrastructure Perception (CIP),
which uses a combination of novel algorithms and systems
optimizations. It produces perception outputs within 100 ms using
modest computing resources and with accuracy comparable to the
state-of-the-art. CIP, when used to augment vehicle perception,
can improve safety. When used in conjunction with offloaded
planning, CIP can increase traffic throughput at intersections.

Index Terms—Cooperative Perception, Infrastructure-assisted
Perception, Autonomous Vehicle Systems

I. INTRODUCTION

Machine perception extracts higher-level representations of a

scene from low-level sensor signals in real-time. Perception is

essential for autonomy and is now a crucial component of every

autonomous driving stack [1], [2]. The perception component of

an autonomous driving stack extracts bounding boxes and tracks

of dynamic objects in a scene such as vehicles, pedestrians

and bicyclists. It may also extract compact representations for

static scene elements such as lane markers and drivable space.

Perception has long suffered from sensor range and line-

of-sight limitations. For example, a LiDAR on the vehicle A

in Fig. 1 may not have enough range to see the bicyclist

behind the vehicle B. Even if it did, the LiDAR’s view

would be occluded by the vehicle B. To address this, prior

work has considered two qualitatively different approaches. In

cooperative perception, vehicles share sensor or perception

outputs between themselves [3] to effectively extend visual

range and address line-of-sight limitations. For example, the

vehicle A (Fig. 1) could “see” the bicyclist using vehicle B’s

perception outputs. In infrastructure-assisted perception [4],

a vehicle augments its own perception using sensors in the

infrastructure [5]. In Fig. 1, the vehicle A could “see” the

occluded bicyclist using the LiDAR at the top of the figure.

In this work, we consider a complementary capability,

cooperative infrastructure perception (or CIP). This produces

* Equal contribution to this work.

�����

��	�
����
��	�
���

������������

�����	�	�	������

������

����
�������

�����

�����

�����

FIGURE 1: CIP deployment at an intersection with multiple LiDARs and
nearby edge compute.

bounding boxes and tracks of dynamic objects in a scene,

such as vehicles and pedestrians, by combining and processing

outputs of multiple infrastructure sensors. Fig. 1 shows an

example in which CIP can use four LiDARs placed at

an intersection to cooperatively detect and track vehicles,

pedestrians and bicyclists. Compared to cooperative perception,

CIP’s LiDARs, when mounted well above vehicle height, will

likely have a better view of objects in the scene. For example,

the LiDAR on the left might be able to view part of the bicyclist

behind the vehicle B, while the vehicle A’s LiDAR may not.

Compared to infrastructure-assisted perception, CIP’s LiDARs

can collectively obtain more complete views of an object and

so can estimate better bounding boxes. For example, each

LiDAR adjacent to the vehicle B can only view half of the

vehicle; together, they can view the entire car.

CIP enables several novel capabilities:

Perception Augmentation. CIP can deliver bounding boxes

and tracks of all traffic participants to all vehicles. An

autonomous vehicle can augment its own perception with these

and plan better paths, thereby increasing overall safety.

Planning Offload. CIP’s outputs can be used to plan trajec-

tories for all vehicles on edge compute (Fig. 1), and deliver

each vehicle’s trajectory wirelessly. Offloading planning can be

useful in restricted settings such as ports, parking lots, factories,

and so on. Indeed, industry is developing such a capability to

autonomously guiding a car without on-board perception and

planning into a parking spot [6].

Pedestrian Situational Awareness. CIP’s outputs can be pro-

cessed to deliver situational awareness to pedestrians such as

an audio cue to a visually-impaired pedestrian or rendering by

a real-time outdoor augmented reality system.

61

2024 IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation (IoTDI)

979-8-3503-7025-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IoTDI61053.2024.00010

20
24

 IE
EE

/A
C

M
 N

in
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
rn

et
-o

f-
Th

in
gs

 D
es

ig
n

an
d

Im
pl

em
en

ta
tio

n
(I

oT
D

I)
 |

97
9-

8-
35

03
-7

02
5-

6/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
Io

TD
I6

10
53

.2
02

4.
00

01
0

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

More generally, CIP can be deployed not just at intersections,

but in plazas, shopping malls, college and enterprise campuses

and tourist attractions, and can be used to guide pedestrians,

bicyclists and vehicles in various ways.

Three technology trends enable CIP. LiDARs are becoming

cheaper, especially with the development of solid-state Li-

DARs [7]. Large cloud providers are rolling out edge compute

deployments [8]. Finally, cellular carriers have made substantial

investments in 5G deployments [9].

Given these trends, we expect that CIP software can be

architected as a software pipeline running on commodity edge

compute (Fig. 1). CIP will process and combine LiDAR outputs

to produce objects and tracks, then deliver them wirelessly to

traffic participants. The use cases presented above motivate

two challenging requirements that CIP must meet.

• Autonomous vehicles must perceive the world and make

driving decisions at a frequency of 10 Hz with a tail latency

less than 100 ms [10]. To be applicable to autonomous

driving, CIP must also adhere to the same latency constraints.

LiDARs generate data at 10 frames per second. At 30 MB per

frame, with four LiDARs at an intersection, this translates to

CIP having to process data at a raw rate of nearly 10 Gbps.

With commodity compute, this is not straightforward.

• CIP generates a scene description that consists of dynamic

objects along with their positions, bounding boxes, heading

vectors and motion vectors. The accuracy of these must match

or exceed the state-of-the-art computer vision algorithms.

It is not immediately obvious that CIP can meet these

requirements; for example, the most accurate 2D and 3D object

detectors on a popular autonomous driving benchmark [11]

incur a processing latency of 60-300 ms.

To address these challenges, our work makes the following

contributions:

• To fuse 3D frames from multiple LiDARs, CIP introduces a

novel alignment algorithm whose accuracy is significantly

higher than prior work (§II-A).

• With an accurate 3D fused view, CIP introduces fast and

cheap implementations of algorithms for dynamic object

extraction, tracking, and speed estimation. These are cen-

tered around a single bounding box abstraction which CIP

computes early on in the pipeline (§II-B). This design choice

is crucial for ensuring speed without sacrificing accuracy.

• Cheap algorithms for heading estimation are inaccurate, so

CIP develops a more accurate GPU-offload heading estimator

to meet the latency constraint (§II-C).

• Its outputs can be used to augment vehicle perception, or

enable offloaded planning, capabilities that can increase

vehicular safety and throughput.

Using real-world datasets and simulations, we show that

CIP can generate perception outputs with a 99th percentile

latency of less than 90 ms in scenes with 30-50 vehicles and

pedestrians, just using a 16 core desktop with a single GPU. Its

object extraction and tracking accuracy compare well with the

state-of-the-art. When used to augment perception, it can ensure

safety in 3×-5× more scenarios than standard autonomous

driving. When used with offloaded planning, it can reduce

traffic wait time by up to 5×.

II. CIP DESIGN

In this section, we describe CIP’s design, beginning with

an overview of its approach. We do this using data from

our deployment of four LiDARs at the four corners of a busy

intersection of a major metropolitan area as shown in Fig. 2(a).1

Inputs and Outputs. The input to CIP is a continuous sequence

of LiDAR frames from each LiDAR in a set of overlapping
LiDARs deployed roadside. The output of perception is a

compact abstract scene description: a list of bounding boxes

of moving objects together with their motion vectors (Fig. 2(e)).

Approach. To address the challenges described in §I, CIP

uses a three stage pipeline, each with three sub-stages (Fig. 3).

Fusion combines multiple LiDAR views into fused frames

(Fig. 2(c)), and then subtracts the static background to reduce

data for subsequent processing (Fig. 2(d)). Participant extrac-
tion identifies traffic participants by clustering and, estimates a

tight 3D bounding box around each object. Tracking associates

objects across frames, and estimates their heading and motion

vectors (Fig. 2(e)).

This design achieves CIP’s goals using three ideas:

• CIP exploits the fact that LiDARs are static to cheaply

fuse point clouds from multiple overlapping LiDARs into a

single fused frame. Such a frame may have more complete

representations of objects than individual LiDAR frames.

Fig. 2(b) shows the view from each of the four LiDARs;

in many of them, only parts of a vehicle are visible. Fig. 2(c)

shows a fused frame which combines the four LiDAR frames

into one; in this, all vehicles are completely visible.2

• CIP builds most algorithms around a single abstraction, the

3D bounding box of an object (Fig. 2(e)). Its tracking, speed

estimation, and motion vector estimation rely on the observation

that the centroid of the bounding box is a convenient consistent

point for estimating these quantities, especially when fused

LiDAR frames provide comprehensive views of an object.

• CIP uses, when possible, cheap algorithms rather than

expensive deep neural networks (DNNs). Only when higher

accuracy is required does CIP resort to expensive algorithms,

but employs hardware acceleration to meet the latency budget;

its use of a specialized heading vector estimation is an example.

To appreciate the novelty of this approach, consider Ta-

ble I which compares CIP’s design to that of open-source

autonomous driving perception designs [1], [2]:

• These approaches rely on a pre-built 3D map (called HD

map), and localize the ego-vehicle (the one on which the

autonomous driving stack runs) by matching its LiDAR scans

against the HD map. In contrast, CIP does not require a map

for positioning: all vehicle positions can be directly estimated

from the fused frame.
1Practical deployments of roadside LiDARs need to consider coverage

redundancy and other placement geometry issues, which are beyond the scope
of this paper.

2Not immediately obvious from the figure, but a LiDAR frame, or a fused
frame is a 3D object, of which Fig. 2(c) is a 2D projection.

62

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

�������

�������

�������

������	

(a) (b) (c) (d) (e)
FIGURE 2: CIP deployment at a busy intersection with heavy vehicular and pedestrian traffic in a large metropolitan city. (a) A top down view of the
intersection (taken from Google Maps [12]). We mounted four LiDARs near each of traffic light poles situated at the four corners of the intersection. (b)
An individual frame from each one of the four LiDARs. (c) A fused frame. (d) Point clouds of traffic participants (dynamic objects) at the intersection. (e)
Bounding boxes and motion vectors for traffic participants, calculated over successive frames.

��������	
�����
���������
	
�������������
����

������

����������
��������
���
��	���	���
�����
������������
�������
���

�	
����	������
	�����

��
��������
���
�������
���	��
��	���	���
�����
����������������
���

�
	�����

FIGURE 3: Perception stages. Bold sub-stages described in detail.

CIP AV Perception [1], [2]

Mapping None Pre-built HD map

Localization Live Fused Point Cloud
(§II-A)

LiDAR scan matching,
Fusion with GPS-RTK or
IMU

Object Detection 3D Object Detection
(§II-B)

Obstacle detection in 2D
BEV projection, 2D ob-
ject detection in camera,
projected to 3D

Tracking/Motion
Estimation

Kalman filter with match-
ing, Heading Estimation
(§II-C)

Kalman filter with match-
ing

TABLE I: CIP and autonomous vehicle perception.

• Autonomous driving stacks use different ways to identify

traffic participants. They extract obstacles from a 2D birds-eye-

view or use a 2D object detector on images, then back-project

these to the 3D LiDAR view. CIP, on the other hand, directly

extracts the 3D point cloud associated with each participant.

It does this cheaply using background subtraction because its

LiDARs are relatively static.

• Autonomous driving stacks use Kalman filters to estimate

motion properties3 (e.g., speed and heading) of other vehicles.

For heading, CIP uses a more sophisticated algorithm to ensure

higher tail accuracy.

Below, we describe parts of CIP’s novel perception relative

to autonomous driving stacks (bold text in Table I).

A. Accurate Alignment for Fast Fusion

Point Cloud Alignment. Each frame of a LiDAR contains a

point cloud, a collection of points with 3D coordinates. These

coordinates are in the LiDAR’s own frame of reference. Fusing

frames from two different LiDARs is the process of converting

all 3D coordinates of both point clouds into a common frame

of reference. Alignment computes the transformation matrix

3Vehicles use SLAM to estimate their own motion and heading.

for this conversion.

Prior work has developed Iterative Closest Point (ICP) [13]

techniques that search for the lowest error alignment. The

effectiveness of these approaches depends upon the initial

guess for LiDARs’ poses. Poor initial guesses can result in local

minima. SAC-IA [14] is a well-known algorithm to quickly

obtain an initial guess for ICP. As we demonstrate in §IV, with

SAC-IA’s initial guesses, ICP generates poor alignments on

full LiDAR frames.

Initial Guess using Minimal Information. Besides the

point clouds, SAC-IA requires no additional input. CIP uses

an algorithm to obtain good initial guesses using minimal

additional input. Specifically, CIP only needs the distances on

the ground between a reference LiDAR and all others to get

good initial guesses.4 We can measure these distances using,

for example, an off-the-shelf laser rangefinder [15].

We now describe the algorithm for two LiDARs L1 and L2

(as shown in Fig. 4(a)); the technique generalizes to multiple

LiDARs as described in Alg. 1. The inputs are two point

clouds C1 and C2 (more generally, N point clouds captured

from the corresponding LiDARs at the same instant (Fig. 4(b)

and Fig. 4(c)), and the distance d on the ground between

the LiDARs. The output is an initial guess for the pose of

each LiDAR. We feed these guesses into ICP to obtain good

alignments. The algorithm conceptually consists of three steps:

Fix base coordinates. Set L1’s x and y coordinates to be

(0, 0) i.e., base at origin (Alg. 1 line 3). Then, assume that

L2’s base is at (d, 0) (Fig. 4(d)).

Estimate height, roll and pitch. In this step, we determine:

the height of each LiDAR zi, the roll (angle around the x axis),

and pitch (angle around the y axis). For these, CIP relies on fast

plane-finding algorithms [16] that extract planes (Alg. 1 lines 1

and 4) from a collection of points. These techniques output the

equations of the planes. Assuming that the largest plane is the

ground-plane (a reasonable assumption for roadside LiDARs),

CIP aligns the z axis of two LiDARs with the normal to the

ground plane (Alg. 1 line 5). In this way, it implicitly fixes the

roll and pitch of the LiDAR. Moreover, after the alignment,

the height of the LiDARs zi is also known (because the z axis

4LiDAR GPS locations as input result in poor alignment (§IV).

63

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d) (e)
FIGURE 4: An illustration of CIP’s point cloud alignment algorithm. (a) A top down view of a parking lot with two LiDARs shown by red (L1) and blue (L2)
icons. (b) The inputs to initial guess algorithm are point clouds (C1 and C2) in the respective LiDAR’s coordinate system along with the ground distance d
between them. (c) Figure (b) with background removed. (d) To fix the base coordinates, CIP displaces C2 by the ground distance d. (e) CIP rotates both C1

and C2 by small yaw increments to find the combination with the least distance between the point clouds.

Input : 1. C = {C1, · · · , CN}; Ci is LiDAR Li’s point
cloud.
2. D = {d2, · · · , dN}; di is the distance from Li to
the reference LiDAR L1.

Output: T = {T2, T3, · · · , TN}; Ti is the transformation
matrix from Ci to L1’s coordinate system.

1 SegmentGroundPlane (C1);
2 for i ← 2 to N by 1 do
3 AlignPosition (Ci, C1, di);
4 SegmentGroundPlane (Ci);
5 AlignGroundPlane (Ci, C1);
6 EstimateYaw (Ci);
7 end
Algorithm 1. Estimating an initial guess for alignment.

is perpendicular to the ground plane).

Estimate yaw. Finally, to determine yaw (angle around the

z axis), we use the technique illustrated in Fig. 4(e) (Alg. 1

line 6). In this technique, CIP rotates both point clouds C1

and C2 with different yaw settings until it finds a combination

that results in the smallest 3D distance5 between the two point

clouds. We have found that ICP is robust to initial guesses for

yaw that are within about 15-20◦ of the actual yaw, so CIP

discretizes the search space by this amount. In case of Fig. 4(e),

CIP calculates the initial guess for the yaw by rotating the blue

point cloud (C2).

Obtaining Alignment. CIP repeats this procedure for every

other LiDAR Li with respect to L1, to obtain initial guesses

for the poses of every LiDAR (Alg. 1 line 2). It feeds these

into ICP to obtain an alignment.

Alignment is run only once when installing the LiDARs.

Re-alignment may be necessary if a LiDAR is replaced or re-

positioned. Alignment is performed infrequently but is crucial

to CIP’s accuracy (§IV-C).

Per-frame Stitching. LiDARs generate frames at 10 fps (or

more). In Fig. 2, when each LiDAR generates a frame, the

fusion stage performs stitching. Stitching applies the coordinate

transformation for each LiDAR generated by the alignment

resulting in a fused frame (Fig. 2(c)).

B. Reusing 3D Bounding Boxes

CIP’s efficiency results from reusing the 3D bounding box
of a participant (Fig. 2(e)) in processing steps. After stitching,

5The 3D distance between two point clouds is the average distance between
every point in the first point cloud to its nearest neighboring point in the
second point cloud.

Centroid Axes Dimension

Tracking
Speed

Estimation
Cyber-phy
Association

Heading
Estimation

Planning

TABLE II: CIP reuses properties of the bounding boxes in multiple modules
to ensure low latency.

CIP extracts the bounding box by performing background
subtraction on the fused point cloud to extract points belonging

to dynamic objects. On these points, it applies clustering to

determine points belonging to individual objects. Finally, it runs

a bounding box estimation algorithm on these points. These

use well-known algorithms, albeit with some optimizations;

we describe these in §II-D. CIP uses the bounding box for

many of its algorithms (Table II); we describe these below.

Tracking. To associate objects across frames (tracking), CIP

uses a Kalman filter to predict the position of the centroid
of the 3D bounding box. Then, it finds the best match (in a

least-squares sense) between predicted positions and the actual

positions of the centroids in the frame. Although tracking in

point clouds is a challenging problem [17] for which research

is exploring deep learning, a Kalman filter works exceedingly
well in our setting. The biggest challenge in tracking is

occlusions: when one object occludes another in a frame, it

may be mistaken for the other in subsequent frames (ID-switch).

Because our fused frame includes perspectives from multiple

LiDARs, ID-switches occur rarely (§IV).

Speed Estimation. To estimate speed of a dynamic object, CIP

measures the distance between the centroid of the bounding

box in one frame and the centroid w frames in the past (w is a

configurable window size). It then estimates speed by dividing

the distance by the time to generate w frames.

Cyber-physical Association. CIP needs to associate an object

seen in the LiDAR with a cyber endpoint (e.g., an IP address).

This is important so that CIP can send that object customized

results i.e., perception results relevant to that object or a

customized trajectory planned for that vehicle. For this step,

CIP uses a calibration step performed once. Given a vehicle for

which we know the cyber-physical association (e.g., LiDAR

installer’s vehicle), we estimate the transformation between

the trajectory of the vehicle seen in the LiDAR view with the

GPS trajectory (details omitted for brevity). CIP uses this to

transform a vehicle’s GPS trajectory to its expected trajectory

in the scene, then matches actual scene trajectory to expected

trajectory in a least-squares sense. To define the scene trajectory,

64

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

���������

�

�

��	
�

��	
�

��	
�
 �

��� ���

FIGURE 5: The figure shows the points belonging to a vehicle in two
successive frames t and t+1. (a) Strawman approach for heading determination.
(b) CIP’s approach.

we use the centroid of the vehicle’s bounding box.

The centroid of the bounding box is an easily computed

and consistent point within the vehicle that simplifies these

tasks. Because we have multiple LiDARs that capture a vehicle

from multiple directions, the centroid of the bounding box is

generally a good estimate of the actual centroid of the vehicle.

Besides these, CIP (a) estimates heading direction from the

axes of the bounding box (discussed in §II-C) and (b) uses

the dimensions of the box to represent spatial constraints for

planning (discussed in §III).

C. Fast, Accurate Heading Vectors

To compute the motion vector of a vehicle, CIP first

determines, for each object, its instantaneous heading (direction

of motion), which is one of the three surface normals of the

bounding box of the vehicle. It estimates the motion vector as

the average of the heading vectors in a sliding window of w
frames. Most autonomous driving stacks can obtain heading

from SLAM or visual odometry (§V), so little prior work has

explored extracting heading from infrastructure LiDAR frames.

A Strawman Approach. Consider an object A at time t and

time t+ 1. Fig. 5(a) shows the points belonging to that object.

Since those points are already in the same frame of reference,

a strawman algorithm finds the vector between the centroid

of A at time t and centroid of A at time t + 1. Then, the

heading direction is the surface normal from the bounding box

that is most closely aligned with this vector (Fig. 5(a)). We

have found that the error distribution of this approach can have

a long tail (although average error is reasonable). If A has

fewer points in t+1 than in t (Fig. 5(b), upper), the computed

centroid will be different from the true centroid, which can

induce significant error.

CIP’s Approach. To overcome this, CIP uses ICP to find the

transformation matrix between A’s point cloud in t and in t+1.

Then, it places A’s point cloud from t in frame t+1 (Fig. 5(b),

lower). Finally, it computes the vector between the centroids

of these two (so that the centroid calculations are based on

the same set of points). As before, the heading direction is the

surface normal that is most closely aligned with this vector.

GPU Acceleration. ICP is compute-intensive even for small

object point clouds. If there are multiple objects in the frame,

CIP must run ICP for each of them. We have experimentally

found this step to be the bottleneck. Thus, we developed a

fast GPU-based implementation of heading vector estimation,

which reduces the overhead of this stage (§IV-D).

A typical ICP implementation has four steps: (1) estimating

correspondence between the two input point clouds, (2)

estimating transformation between the two point clouds, (3)

applying the transformation to the source point cloud and

(4) checking for ICP convergence. The first step requires a

nearest neighbor search; instead of using octrees, we adapt

a parallelizable version described in [18] but use CUDA’s

parallel scanning to find the nearest neighbor. The second

step shuffles points in the source point cloud then applies the

Umeyama algorithm [19] for the transformation matrix. We

re-implemented this algorithm using CUDA’s demean kernel

and a fast SVD implementation [20]. For the third and fourth

steps, we developed custom CUDA kernels. This step scales

linearly with the number of vehicles but parallelizes easily to

multiple GPUs; at intersections with many vehicles, CIP can

use edge computing resources with multiple GPUs.

D. Optimizations

Background Subtraction. CIP removes points belonging to

static parts of the scene6. This is: (a) especially crucial for

voluminous LiDAR data, and (b) feasible in our setting because

LiDARs are static. It requires a calibration step to extract a

background point cloud from each LiDAR [21], then creates a

background fused frame using the results from alignment. To

extract the background point cloud, CIP takes the intersection of

a few successive point clouds and the aggregating intersections

taken at a few different time intervals.

Subtraction before Stitching. CIP can subtract the background

fused frame from each fused frame generated by stitching. We

have found that removing the background from each LiDAR

frame (using its background point cloud), and then stitching

points in the residual point clouds can significantly reduce

latency. Stitching scales with the number of points, which this

optimization reduces significantly.

Leveraging LiDAR Characteristics. Many LiDAR devices

only output returns from reflected laser beams. Generic

background subtraction algorithm requires a nearest-neighbor

search to match a return with the corresponding return on the

background point cloud. Some LiDARs (like Ouster [22]),

however, indicate non-returns as well, so that the point

cloud contains the output of every beam of the LiDAR. For

these, it is possible to achieve fast background subtraction by

comparing corresponding beam outputs in a point cloud and

the background point cloud.

Computing 3D Bounding Boxes. On the points in the

fused frame remaining after background subtraction, CIP uses

a standard clustering algorithm (DBSCAN) [23] to extract

multiple clusters of points where each cluster represents one

traffic participant. Then, it uses an off-the-shelf algorithm [24],

which determines a minimum oriented bounding box of a

cluster using principal component analysis (PCA). From these,

it extracts the three surface normals of the object: the vertical

6Static parts of the scene (e.g., an object on the drivable surface) might be
important for path planning. CIP uses the static background point cloud to
determine the drivable surface; this is an input to the planner (§III-B). We
omit this for brevity.

65

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

FIGURE 6: The orange truck ob-
structs ego-vehicle’s (yellow box)
view of the red-light violator.

FIGURE 7: The orange trucks ob-
struct the ego-vehicle’s (yellow box)
view of the left-turning car (red box).

axis, the axis in the direction of motion, and the lateral axis.

III. USE CASES

Beyond describing CIP, it is important to demonstrate its

utility. To this end, we describe its use in (a) augmenting

vehicle perception and (b) offloading planning to the edge.

These improve traffic safety and throughput respectively (§IV).

A. Augmenting a Vehicle’s Perception

3D sensors mounted on autonomous vehicles are prone to

line-of-sight-limitations and occlusions. NHTSA [25] has high-

lighted a number of scenarios where line-of-sight limitations

can cause potential traffic accidents [26]. For instance, in Fig. 6

the ego-vehicle (bounded in yellow) has the right-of-way and

attempts to cross the intersection. However, it is unaware of an

oncoming red-light violating vehicle (bounded in red) which is

occluded by the orange truck. As a result, the ego-vehicle will

crash into the red-light violating vehicle. The same is true for

Fig. 7 where the ego-vehicle (bounded in yellow) cannot see

the vehicle taking the unprotected left turn (bounded in red).

In such traffic scenarios, if the vehicle had access to other 3D

views that could sense the oncoming vehicle, it could avoid the

traffic accident. With LiDARs mounted at the intersection, CIP

can wirelessly transmit its perception outputs to all vehicles.

Vehicles, after positioning these bounding boxes and motion

vectors in their own coordinate system [27], can fuse them

with results from their on-board perception stack.

Finally, they feed the fused results to their on-board planning

module. In an autonomous vehicle, the planner [28] generates,

every LiDAR frame, short-term trajectories (at the timescale of

100s of milliseconds) that the vehicle must follow. A trajectory

is a sequence of way-points, together with the precise times

at which the vehicle must arrive at those way-points. Because

the fused perception results contain the obstructed vehicles,

the planner is aware of their presence and their motion. As a

result, it can devise collision-free trajectories for vehicles to

enable safer driving.

B. Offloading Planning to the Edge

In §III-A, each vehicle plans its trajectory independently.

However, because CIP has a comprehensive view of the

intersection, it can actually plan trajectories for all vehicles on

edge compute. While this may seem far-fetched, there already

exists at least one company [6] exploring this capability in

limited settings. In malls and airports, this capability uses

infrastructure sensors and edge-based planning to guide vehicles

to and out of their parking spaces.

(a) (b) (c)
FIGURE 8: (a) The first planned vehicle (red) can use the entire drivable
space. (b) The second vehicle (blue) treats the first as an obstacle (orange).
Different shades represent different times at which grids are occupied. (c)
The motion-adaptive buffer around a vehicle is proportional to its speed.

FIGURE 9: With autonomous driving’s decentralized planning, in the absence
of a traffic light controller, vehicles come to a deadlock at the intersection
where they are unable to cross it.

Offloading planning to the edge can improve traffic through-

put at intersections. Instead of traffic lights, the planner can

regulate the speed of each car so that all cars can traverse

the intersection safely, possibly without stopping. Traffic-light

free intersections [29] are a long sought after goal in the

transportation literature.

To demonstrate this, we have adapted a fast single-robot
motion planner, SIPP [30]. The input to SIPP is a goal for a

robot, the positions over time of the dynamic obstacles and an

occupancy grid of the environment (Fig. 8(a)). The output is

a provably collision-free shortest path for the robot. At each

frame, the planner must plan trajectories for every CIP-capable

vehicle. Without loss of generality, assume that vehicles are

sorted in some order. The edge-offloaded planner iteratively

plans trajectories for vehicles in that order: when running SIPP

on the i-th vehicle, it represents all i− 1 previously planned

vehicles as dynamic obstacles in SIPP. Fig. 8(b) illustrates

this, in which the trajectory of a previously planned vehicle is

represented as an obstacle when planning a trajectory for the

blue vehicle.

This approach has two important properties:

1) All trajectories are collision-free. Two cars i and j cannot

collide, since, if j > i, j’s trajectory would have used i’s as

an obstacle, and SIPP generates a collision-free trajectory for

each vehicle.

2) This planner cannot result in a traffic deadlock. A

deadlock occurs when there is a cycle of cars in which each

car’s forward progress is hampered by another. Fig. 9 shows

examples of deadlocked traffic with two, three, and four cars

(these scenarios under which these deadlocks occurred are

described in §IV-G). However, our edge-offloaded planner

cannot deadlock. If there exists a cycle, there must be at

least one pair of cars i, j where i < j and i blocks j. But

this is not possible, because, when planning for j, the planner

represents i’s trajectory as an obstacle.

Because it was designed for robots, SIPP makes some

66

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

idealized assumptions: all robots use the planned trajectories,

all have the same dimensions, no trajectories are lost and robots

can start and stop instantaneously. In our implementation, we

adapted SIPP to relax these but omit details for brevity.

IV. EVALUATION

Our evaluations demonstrate CIP’s performance and accuracy,

and its potential for improving traffic safety and throughput.

A. Methodology

Implementation. We implemented CIP and the two use cases

discussed in §III on the Robot Operating System (ROS [31]).

ROS provides inter-node (ROS modules are called nodes)

communication using publish-subscribe, and natively supports

points clouds and other data types used in perception-based

systems. CIP runs as a ROS node that subscribes to point

clouds, processes them as described in §II, and publishes the

results. The offloaded planner (§III-B) builds on top of an

open-source SIPP implementation [32], runs as a ROS node,

subscribes to the CIP results, and publishes trajectories for

each vehicle. CIP requires 6909 lines of C++ code, and the

use cases 3800.

Real-world Traces. We evaluated CIP on a large open source

multi-LiDAR intersection dataset (LUMPI [33]). This dataset

contains approximately 2.5 hours of 3D data collected across

several days from upto five LiDARs mounted at a busy inter-

section in Hanover, Germany. These LiDARs include two 16-

beam LiDARs (Velodnye VLP-16) and three 64-beam LiDARs

(Velodyne HDL-64, Hesai Pandar64, and Hesai PandarQT).

CIP is designed to handle such sensor heterogeneity.

For all evaluations in this paper, we ran CIP on an “edge

compute” device, an AMD 5950x CPU (16 cores, 3.4 GHz)

and a GeForce RTX 3080 GPU. This device has significantly

less compute than a commercial edge offering; for example, a

server on Google’s distributed cloud edge has 96 vCPUs and 4

GPUs [8]. In that sense, our evaluation is conservative relative

to what one might expect from a real deployment.

Real-world Testbed. Besides evaluating CIP on real-world

traces, we also built our own real-world testbed consisting of

four Ouster LiDARs [22] (an OS-1 64, an OS-0 128, and two

OS-0 64). Three of these have a field of view of 90◦ while

the last one has a 45◦ field of view.

Simulation. The LUMPI dataset does not contain ground-truth,

so we complement our evaluations with a simulator, which

helps us evaluate CIP accuracy and scaling. We use CarLA [26],

an industry-standard photo-realistic simulator for autonomous

driving perception and planning. It contains descriptions of

virtual urban and suburban streets, and, using a game engine,

can (a) simulate the control of vehicles in these virtual worlds,

and (b) produce LiDAR point clouds of time-varying scenes.

Unless otherwise noted, our simulation based evaluations focus

on intersections; several challenge scenarios for autonomous

driving focus on intersections [34].

Metrics. We quantify end-to-end performance in terms of the

99th percentile of the latency (p99 latency) between when a

LiDAR generates a frame and when CIP produces its outputs

for that frame. To quantify accuracy of individual components,

we use metrics described in prior works (defined later).

B. CIP Performance

We ran CIP on 2.25 hours of point clouds traces from the

LUMPI dataset. In these experiments, we measured the average,

99th percentile and end-to-end latency of CIP. Our results show

that CIP is able to achieve the 99th percentile latency less than

100 ms.

The LUMPI dataset provides two traces (Fig. 10), one with

three infrastructure LiDARs and another with five. In the 3-

LiDAR setup, the LiDARs are deployed on one side of a 4-way

intersection. The 5-LiDAR setup adds two more lidars to cover

the other side of the intersection. The latter covers more of

the intersection, so CIP detects more traffic participants.

Fig. 11 and Fig. 12 show the perception latency and number

of participants for each frame. In the 3-LiDAR setup, CIP’s

median latency is 38.7ms and p99th latency is 71.6ms. In the

5-LiDAR setup, CIP’s median latency is 56.1ms and p99th

is 88.8ms. CIP’s latency roughly scale with the number of

participants in the intersection. In the trace with the 5-LiDAR

setup, a small number of frames exceed the 100ms target;

these frames have more than 50 participants and more than 30

vehicles. The number of participants in the 5-LiDAR setup is

about 1.5× more than the 3-LiDAR setup. Overall, it shows that

CIP can comfortably support, with modest computing resources,

such an busy intersection with more than 40 participants and

can still maintain the tail latency within 100 ms.

C. CIP Accuracy

Because the LUMPI dataset does not have ground-truth, we

evaluated CIP’s accuracy using real-world data that we collected

using our own testbed.7 On this dataset, we manually labeled

ground-truth positions. We also evaluated CIP’s accuracy using

CarLA. We show that CIP’s positioning, heading, speed, and

tracking accuracies are comparable to that reported in other

works.

Metrics. We report positioning error (in m), which chiefly

depends upon the accuracy of alignment. We measure heading

accuracy using the average deviation of the heading vector,

in degrees, from ground truth. For the accuracy of velocity

estimation, we report both absolute and relative errors. Finally,

we use two measures to capture tracking performance [35]:

multi-object tracking accuracy (MOTA) and precision (MOTP).

The former measures false positives and negatives as well as

ID switches (§II); the latter measures average distance error

from the ground-truth track.

Results. Table III summarizes our findings. Positioning error

is about 8-10 cm in CIP, both in simulation and in the real

world; the state-of-the-art LiDAR SLAM [36] reports about

15 cm error. Our heading estimates are comparable to prior

work that uses a neural network to estimate heading. Speed

estimates are highly accurate, both in an absolute sense (error

of a few cm/s) and in a relative sense (over 97%).

7We also use this dataset to quantify latency with offloaded planning; §IV-D.

67

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

�������
	������

FIGURE 10: LiDARs placement in the LUMPI
dataset.

FIGURE 11: CIP performance with a 3-LiDAR setup
in the LUMPI dataset.

FIGURE 12: CIP performance with a 5-LiDAR setup
in the LUMPI dataset.

Metric Real Sim Prior
Positioning Error (m) 0.10 0.08 0.15 [36], [38]

Heading Error (◦) 8.17 6.45 5.10 [39]
Speed Error (m/s) 0.04 0.06 —

Speed Accuracy (%) 98.80 97.49 —
MOTA (%) 100 99.54 84.52 [37]
MOTP (m) 0.12 0.08 —

TABLE III: Perception accuracies from real-world data and simulation
compared to prior works.

Finally, tracking is also highly accurate. In the real-world ex-

periment, tracking was perfect. In simulation, with 10 vehicles

concurrently visible, MOTA is over 99%, and CIP outperforms

the state-of-the-art neural network in 3D tracking [37], for two

reasons. The neural network solves a harder problem, tracking

from a moving LiDAR. Our fused LiDAR views increase

tracking accuracy; when using a single LiDAR to track, MOTA

falls to 93%. Finally, MOTP is largely a function of positioning

error, so it is comparable to that value.

Alignment Accuracy. Although alignment is performed only

once, its accuracy is crucial for CIP; without accurate alignment,

CIP’s perception components could not have matched the state-

of-the-art (Table III).

Comparison alternatives. To contextualize CIP’s alignment

performance, we compared it against two other ways of

obtaining an initial guess for ICP: a standard feature-based

approach, SAC-IA [14]; and using GPS. In this experiment,

we use point clouds from our simulations and real-world

experiments. The three approaches estimate initial guesses

for the pose of three LiDARs, and feed those poses to ICP

for building a stitched point cloud. In our evaluations, we

report the average root mean square error (RMSE) between the

stitched point cloud (after running ICP on the initial guesses)

for every approach against a ground-truth.

Results. CIP’s alignment results in errors of a few cm

(Table IV), almost 2-3 orders of magnitude lower error than

the competing approaches, which explains why we chose this

approach. SAC-IA [14] does not take any inputs other than

the point clouds and estimates the transformation between

two point clouds using 3D feature matching. However, this

works well only when point clouds have a large amount of

overlap. In our setting, LiDARs are deployed relatively far from

each other resulting in less overlap, and SAC-IA is unable to

extract matching features from multiple LiDAR point clouds.

Using GPS for alignment provides a good initial guess for the

RMSE (m)
Average Std Dev

Simulation
CIP 0.03 0.02

SAC-IA 39.2 13.4
GPS 23.8 11.1

Real-world
CIP 0.09 0.04

SAC-IA 11.8 13.9
GPS 13.0 1.2

TABLE IV: CIP’s novel alignment algorithm outperforms existing state-of-
the-art initial alignment algorithms.

relative translation between the LiDARs. However, GPS cannot

estimate the relative rotation between LiDARs, so results in

poor accuracy.

D. Latency Breakdown and Scaling

Setup. To explore the total latency with more vehicles and

to understand the breakdown of latency by component, we

designed several scenarios in CarLA with increasing numbers

of vehicles traversing a 4-way intersection. At this intersection,

both streets have two lanes in each direction. We varied the

number of vehicles from 2 to 14, to understand how CIP’s

components scale. To justify this range of the number of

vehicles, we use the following data: the average car length is

15 ft [40] and the width of a lane is 12 ft [41]. Allowing for lane

markers, medians, and sidewalks, let us conservatively assume

that the intersection is 60 ft across. Suppose the intersection has

traffic lights. Then, if traffic is completely stalled or moving

very slowly, at most 4 cars can be inside the intersection per

lane, resulting in a maximum of 16 cars (i.e., the maximum

capacity of the intersection is 16). If cars are stalled, CIP

does not incur much latency since it does not have to estimate

motion, heading, or plan for these, so we limit our simulations

to 14 vehicles.8 On the other hand, if traffic is moving at

45 mph (or 66 fps) and cars maintain a 3-second [42] safe

following distance, then at most one car can be within the

intersection per lane, for a total of 4 cars.

Breakdown for CIP. Table V depicts the breakdown of 99-th

percentile (p99) latency by component for CIP as well as the

total p99 latency, as a function of the number of vehicles in

the scene. In all our experiments, CIP processed frames at the

full frame rate (10 fps).

The total p99 latency for CIP increases steadily up to 82 ms

8We have verified that, above 14 vehicles, end-to-end latencies actually
drop.

68

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

Number of Vehicles
Component 2 4 7 10 12 14

BG Subtraction 7.5 8.9 9.9 9.9 11.0 18.7
Stitching 0.08 0.11 0.13 0.13 0.17 0.19

Clustering 4.3 5.8 11.2 13.0 22.2 20.5
Bounding Box 0.06 0.07 0.09 0.15 0.17 0.16

Tracking 0.1 0.15 0.21 0.28 0.37 0.38
Heading Vector 8.8 12.9 24.0 28.8 41.9 52.6

Total 18.5 26.4 43.7 47.1 69.9 81.5
TABLE V: p99 per-frame latency (in milliseconds) for perception. We exclude
latency numbers for motion vector estimation which are on the order of a
few microseconds.

for 14 vehicles9 from 19 ms for 2 vehicles. This highlights

perception’s data dependency (§II); performance of some

components depends on the number of participants. These

numbers suggest that modest off-the-shelf compute hardware

that we have used in our experiments might be sufficient for

traffic management at moderately busy intersections. This data

dependency also suggests that deployments of CIP will need

to carefully provision their infrastructures based on historical

traffic (similar to network planning and provisioning).

The three most expensive components are background sub-

traction, clustering and heading vector estimation. Background

subtraction accounts for about 10 ms, but depends slightly on

the number of vehicles; to be robust, it uses a filter (details

omitted in §II-A) that is sensitive to the number of points (or

vehicles). Clustering accounts for about 20 ms with 14 vehicles

and is strongly dependent on the number of vehicles since each

vehicle corresponds to a cluster.

Heading estimation accounts for nearly 65% of perception

latency, even after GPU acceleration (§II-C). These results

show that heading vector estimation not only depends on the

number of vehicles, but on their dynamics as well. When we

ran perception on 16 vehicles, p99 latency actually dropped;

in this setting, 16 vehicles congested the intersection, so each

vehicle moved very slowly. Heading vector estimation uses

ICP between successive object point clouds; if a vehicle hasn’t

moved much, ICP converges faster, accounting for the drop.

Other components are lightweight. Stitching is fast because

of the optimization described in §II-A. Bounding box estima-

tion is inherently fast. Track association is cheap because it

tracks a single point per vehicle, the centroid of the bounding

box. Motion estimation takes a few microseconds and relies

on positions computed during stitching. Thus, leveraging

abstractions and reusing values from earlier in the pipeline

help CIP meet latency targets (§II-C).

Benefits of optimizations. Table VI quantifies the benefits

of our optimizations. Stitching before background subtraction

requires nearly 70 ms in total; reversing the order reduces this

time by 6.7×. By exploiting LiDAR characteristics (§II-A),

CIP can perform background subtraction in 1.5 ms per frame.10

A CPU-based heading vector estimation requires nearly 1 s

which would have rendered CIP infeasible; GPU acceleration

9For many of our experiments, including this one, we have generated videos
to complement our textual descriptions. These are available at an anonymous
YouTube channel: https://www.youtube.com/@cip-iotdi24.

10Table V does not include this optimization, since it can only be applied
to some LiDARs

Optimization Before After Ratio
BG subt before stitching 67.7 10.0 6.7

Exploiting LiDAR characteristics 9.9 1.5 6.6
Heading vector GPU acceleration 1057.7 28.8 36.6

TABLE VI: Impact of optimizations on p99 latency

(§II-C) reduces latency by 35×.

Calibration Steps. Finally, alignment (§II-A) of 4 LiDARs

takes about 4 minutes. This includes not just the time to guess

initial positions, but to run the ICP (on a CPU). Because it is

invoked infrequently, we have not optimized it.

E. Perception Augmentation: Safety

In this and subsequent sections, we quantify the feasibility

and benefits of the use cases in §III. We begin by demonstrating

the increased safety resulting from augmenting an autonomous

vehicle’s perception with CIP outputs (§III-A). CIP has a com-

prehensive view of an intersection, so it can lead to increased

safety. To demonstrate this, we implemented two scenarios in

CarLA from the US National Highway Transportation Safety

Administration (NHTSA) precrash typology [34]; these are

challenging scenarios for autonomous driving [26].

Red-light violation. A orange truck and the ego-vehicle

(yellow box) approach an intersection (Fig. 6). An oncoming

vehicle (red box) on the other road violates the red traffic light.

The orange truck can see the violator and hence avoid collision,

but the ego-vehicle cannot.

Unprotected left-turn. The ego-vehicle (yellow box) heads

towards the intersection (Fig. 7). A vehicle (red box) on the

opposite side of the intersection makes an unprotected left-turn.

The ego-vehicle’s view is blocked by the orange trucks.

Methodology and Metrics. In each scenario, CIP augments

the ego-vehicle’s on-board perception. When comparing against

(un-augmented) autonomous driving, to ensure a more-than-fair

comparison, we (a) equip autonomous driving with ground-

truth (perfect) perception and (b) use an on-board SIPP planner

in single-mode (plan only for the ego-vehicle) for autonomous

driving. The alternative would have been to use an open-source

stacks like Autoware [2] which has its own perception and

planning modules. However, in these experiments, we are

trying to understand the impact of augmenting a vehicle’s

perception with CIP, so we chose a simpler approach that

equalizes implementations.

For both scenarios, we vary speeds and positions of the

ego-vehicle and oncoming vehicle to generate 16 different

experiments. We then compare for what fraction of experiments

each approach can guarantee safe passage.

Results. In both scenarios (Table VII), autonomous driving

ensures safe passage in fewer than 20-40% of the cases. CIP

ensures safety in all cases because it senses the oncoming

traffic that is occluded from the vehicle’s on-board sensors11.

This gives the planner enough time to react and plan a collision

avoidance maneuver — in this case, stop the vehicle. Of the

two cases, the unprotected left-turn was the more difficult

one for CIP as it is for autonomous driving, which fails

11Please see YouTube channel for videos. https://www.youtube.com/@cip-
iotdi24

69

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

NHTSA
Scenario

Safe Passage (%)
CIP Autonomous Driving

Red-light Violation 100 37
Unprotected Left-turn 100 18

TABLE VII: With more comprehensive perception, CIP can provide safe
passage to vehicles in both scenarios.

FIGURE 13: CIP can ensure collision-
free trajectories with up to 70%
packet-loss rates.

FIGURE 14: CIP minimizes average
wait times (seconds) for vehicles with
traffic light free intersections.

more often in this case. Yet, CIP is able to guarantee safe

passage in all 16 cases. In the red-light violation scenario, CIP

senses the oncoming traffic early on and has enough time to

react. However, in the unprotected left-turn, the ego-vehicle

is traveling relatively fast and the oncoming traffic takes the

left-turn at the last moment. Even in this case, CIP gives the

vehicle enough time to react. Though CIP has a smaller time to

react, its motion-adaptive bounding box and stopping distance

estimation ensure that the vehicle stops on time.

Robustness to Packet Loss. In our implementation, the

centralized planner transmits trajectories wirelessly to vehicles.

It generates trajectories over a longer time horizon (§III-B)

to be robust to packet loss. To quantify its robustness, we

simulated packet losses ranging from 0 to 100% for in the

red-light violation scenario (Fig. 6). For each loss rate, we

measure the stopping distance between the ego-vehicle and the

oncoming traffic which violates the red-light. Higher stopping

distances are good (Fig. 13). As we increased the packet-

loss, the stopping distance decreased because the ego-vehicle

was operating on increasingly stale information. Even so, CIP

ensures collision-free passage for the ego-vehicle through the

intersection till 70% loss, with minimal degradation in stopping

distance till about 40% loss.

F. Offloaded Planner: Latency

In this section, we measure the performance of a real-

world deployment with CIP running an offloaded planner on

the same device as the CIP stack. To do this, we deployed

four LiDARs at the corners of a busy four-way intersection

(Fig. 2(a)) with heavy pedestrian and vehicular traffic in a

large metropolitan area. These LiDARs connected to the edge

compute device using Ethernet cables. The edge compute

connected to Raspberry Pis on the vehicles through Wi-Fi

(to proxy 5G). We collected data for nearly 30 minutes; we

measured and report the end-to-end latency for every frame.

Metrics. We measure the end-to-end latency of CIP and the

centralized planner. This is the time from when CIP receives

3D point clouds to when a vehicle receives its trajectory from

the centralized planner over the wireless network.

Results. Fig. 15 shows the end-to-end latency for each frame,

FIGURE 15: Per-component end-to-end latency (left y-axis) along with the
number of traffic participants (right y-axis) from a deployment of CIP at a
busy intersection in the real-world for over 30 minutes.

for over 30 minutes (approximately 18,000 frames), broken

down by component. The average end-to-end latency is 57 ms

and p99 latency is 91 ms. This shows that CIP can operates

under the 100 ms latency budget for autonomous driving used

by Mobileye [43]. Moreover, CIP processed LiDAR input at

full frame rate. Lastly, unlike autonomous driving pipelines

today which plan for only a single vehicle, CIP with offloaded

perception can plan for 10 s of vehicles simultaneously within

the 100 ms latency budget.

On average, CIP detects 18 traffic participants per frame

at the intersection during our experiment. As our experiment

progressed, the traffic at the intersection steadily increased, as

shown by the dotted line in Fig. 15 (representing the running

average of traffic participants for 600 frames or 60 seconds).

Because CIP’s latency depends on the number of traffic

participants, this contributed to the slow increase in end-to-end

latency towards the end of the experiment.

From this graph, we also observe that network latency is

small i.e., the average is 9 ms, whereas p99 is 17 ms. The same

is true for planning latency for which the average is 11 ms

and p99 is 26 ms. Planning latency scales with the number of

vehicles. As the number of vehicles increase through the course

of the experiment, planning latency also increases. However,

in overall, perception latency (37 ms in average and p99 of

60 ms) dominates, which motivates the careful algorithmic and

implementation choices in §II.

Scaling Offloaded Planning. To better understand how

offloaded planning scales with the number of participants,

Table VIII depicts the p99 planning latency from simulations.

As expected, there is a dependency on the number of vehicles,

since CIP individually plans for each vehicle. Planning latencies

can be slightly non-monotonic – the planning cost for 12

vehicles is more than that for 14 – because the planner’s graph

search can depend upon the actual trajectories of the vehicles,

not just their numbers.

G. Offloaded Planner: High-Throughput Traffic Management

In this section, we demonstrate CIP’s use of offloaded

planning to improving traffic throughput. Intersections con-

tribute significantly to traffic congestion [44]; traffic-light
free intersections can reduce congestion and wait times. An

offloaded planner, enabled by CIP, because it centrally plans

trajectories for all CIP-capable vehicles, can plan collision-free

70

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

Number of Vehicles 2 4 7 10 12 14

p99 Latency (ms) 2.4 5.1 11.9 17.1 28.7 24.2

TABLE VIII: p99 per-frame planning latency in milliseconds.

trajectories at an intersection without traffic lights. We have

verified this in simulations as well.

Wait-time Comparison. A traffic-light free intersection can

significantly reduce wait times at intersections, thereby en-

abling higher throughput. To demonstrate this, we compared

CIP’s average wait times (using a centralized planner) at an

intersection against three other approaches:

• Static. An intersection with static traffic lights.

• Intelligent. Intelligent traffic light control [45] which priori-

tizes longer queues.

• Ideal-Coop. A traffic-light free intersection where au-

tonomous vehicles use centralized perception but on-board

planning (§III-A). This represents an idealized version of

cooperative perception [3] because it assumes that every

vehicle can see all other traffic participants.

For the first two approaches, we obtained policies from

published best practices [46]. In all experiments, we placed

four LiDARs at an intersection in CarLA.

Results. Compared to Static and Intelligent, CIP reduces

average wait times for vehicles by up to 5× (Fig. 14). It

performs better than even Intelligent because it can minimize

the stop and start maneuvers at the intersection (by preemptively

slowing down some vehicles), and hence can increase overall

throughput, leading to lower wait times.11

Interestingly, beyond about 6 vehicles, wait times for

strategies that use traffic lights (Static and Intelligent) drop.

Recall that our intersection has two lanes in each direction.

As the number of vehicles increases, the probability that a

vehicle can pass the intersection without waiting increases. For

example, with Intelligent, a vehicle waiting at an intersection

can trigger a green light, so a vehicle arriving in the adjoining

lane can freely pass. Even so, CIP has lower wait times than

other alternatives up to 10 vehicles (wait time comparisons are

similar beyond this number, results omitted for brevity).

Fig. 14 shows infinite wait times for Ideal-Coop. That is

because, although one might expect that a decentralized planner

might have comparable throughput to CIP, we found that it led
to a deadlock (§III-B) with as few as two vehicles (each vehicle

waited indefinitely for the other to make progress, resulting

in zero throughput).11 Fundamentally, this occurs because,

with Ideal-Coop, vehicles lack global knowledge of planning

decisions. Thus, deadlocks can happen at intersections without

traffic lights even for more practical cooperative perception

approaches which use on-board planners [3].

V. RELATED WORK

Connected Autonomous Vehicles. Network connectivity in

vehicles has opened up large avenues for research. A large

body of work [47] has explored wireless technologies and

standards (such as DSRC) for vehicle-to-vehicle and vehicle-to-

infrastructure communication. Connected autonomous vehicles

have also inspired proposals for cooperative perception [4],

[48]–[51], collaborative map updates [52], and cooperative

driving [53] in which autonomous vehicles share information

with each other to improve safety and utilization. Some

have proposed approaches to offload route planning (but not

trajectory planning) to the cloud [54]. Others explore platoon-
ing [55] in which vehicles collaboratively and dynamically form

platoons to enable smooth traffic flows. Beyond inter-vehicle

collaboration, several proposals have explored infrastructure

support for connected autonomous vehicles, with infrastructure

augmenting perception [56], [57], or delivering traffic light

status [55]. Other work focuses on infrastructure-assisted traffic

management at intersections [44]. CIP goes beyond this body

of work by demonstrating the feasibility of decoupling both

perception and planning from vehicular control.

Infrastructure LiDAR-based Perception. Prior work has

explored using infrastructure LiDAR to detect pedestrians [58]

and road features such as lanes and drivable surfaces [59],

[60], and to warn vehicles of impending collisions [61]. One

work [62] proposes a genetic algorithm based LiDAR alignment,

but unlike CIP, it has not explored the efficacy of an entire

perception pipeline built on top of LiDAR fusion.

Point Cloud Alignment. CIP’s alignment builds upon point

cloud registration techniques [63]. Prior work has matched

features [64]; these don’t work well for CIP, where LiDARs

capture the scene from very different perspectives.

Deep Neural Nets for 3D Detection and Tracking. For

vehicle-mounted LiDARs, prior work has developed expensive

neural nets for point cloud based detection [65], [66] and

tracking [67], [68]. These are for vehicle-mounted LiDAR and

are computationally expensive; CIP exploits static LiDARs and

can use more efficient algorithms, §IV-C.

Motion Estimation. Heading and speed can be estimated using

DNNs [68], SLAM [69], or visual odometry [70]. CIP uses a

lightweight technique since it relies on static LiDARs.

VI. CONCLUSIONS

Fast cooperative infrastructure perception using multiple

infrastructure sensors can enable novel automotive and outdoor

mixed reality applications. CIP contains a suite of algorithms

that generates cooperative perception outputs with a p99 latency

of 100 ms, while still being as accurate as the state-of-the-

art. It achieves this using careful alignment, reuse of visual

abstractions, and systems optimizations including accelerator

offload. When used to augment vehicle perception, it can

improve safety. When used in conjunction with offloaded

perception, it can increase traffic throughput at intersections.

REFERENCES

[1] Baidu, “Apollo: Open source autonomous driving,” 2017.
[2] K. Miura, S. Tokunaga, N. Ota et al., “Autoware toolbox: Matlab/simulink

benchmark suite for ros-based self-driving software platform,” in RSP,
2019.

[3] H. Qiu, P. Huang, N. Asavisanu et al., “Autocast: Scalable infrastructure-
less cooperative perception for distributed collaborative driving,” in
MobiSys, 2022.

[4] S. Shi, J. Cui, Z. Jiang et al., “Vips: Real-time perception fusion for
infrastructure-assisted autonomous driving,” in MobiCom, 2022.

[5] “How Chattanooga is Achieving Vision Zero with Ouster Li-
dar,” https://ouster.com/blog/how-chattanooga-is-achieving-vision-zero-
with-ouster-lidar/.

71

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

[6] “Inside seoul robotics’s contrarian approach to autonomous vehicle tech,”
https://techcrunch.com/2022/09/22/seoul-robotics-aims-to-automate-
vehicles-movement-via-its-3d-sensor-platform-closes-25m-funding/.

[7] D. Trends, “A Self-Driving Car in Every Driveway? Solid-State Lidar
is the Key,” https://www.digitaltrends.com/cars/solid-state-lidar-for-self-
driving-cars/, 2018.

[8] “Google distributed cloud edge,” https://cloud.google.com/distributed-
cloud-edge, 2022.

[9] “Qualcomm 5G,” https://www.qualcomm.com/invention/5g, 2020.
[10] S. Lin, Y. Zhang, C. Hsu et al., “The architectural implications of

autonomous driving: Constraints and acceleration,” in ASPLOS, 2018.
[11] A. Geiger, P. Lenz, C. Stiller et al., “Vision meets robotics: The kitti

dataset,” IJRR, 2013.
[12] “Google Maps,” www.google.com/maps.
[13] Y. Chen and G. G. Medioni, “Object modeling by registration of multiple

range images,” in ICRA, 1991.
[14] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms

(FPFH) for 3d registration,” in ICRA, 2009.
[15] F. Duchon, M. Dekan, L. Jurisica, and A. Vitko, “Some applications of

laser rangefinder in mobile robotics,” Journal of Control Engineering
and applied informatics, vol. 14, no. 2, pp. 50–57, 2012.

[16] K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester
NY, 2010.

[17] V. Vaquero, I. del Pino, F. Moreno-Noguer et al., “Deconvolutional
networks for point-cloud vehicle detection and tracking in driving
scenarios,” in ECMR, 2017.

[18] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in CVPR Workshops, 2008.

[19] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Comput. Archit. Lett., 1991.

[20] M. Gao, X. Wang, K. Wu et al., “Gpu optimization of material point
methods,” TOG, 2018.

[21] A. G. Kashani, M. J. Olsen, C. E. Parrish et al., “A review of lidar
radiometric processing: From ad hoc intensity correction to rigorous
radiometric calibration,” Sensors, 2015.

[22] Ouster, “Ouster LiDAR,” https://ouster.com/, 2020.
[23] M. Ester, H.-P. Kriegel, J. Sander et al., “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in KDD, 1996.
[24] “Find minimum oriented bounding box of point cloud,”

http://codextechnicanum.blogspot.com/2015/04/find-minimum-oriented-
bounding-box-of.html, 2015.

[25] W. G. Najm, R. Ranganathan, G. Srinivasan et al., “Description of
light-vehicle pre-crash scenarios for safety applications based on vehicle-
to-vehicle communications,” US. NHTSA, Tech. Rep., 2013.

[26] CarLA, “Carla autonomous driving challenge,” https://carlachallenge.org/.
[27] K. Nawaz Khan, A. Khalid, T. Yash, K. Dantu, and F. Ahmad, “VRF:

Vehicle Road-side Point Cloud Fusion,” in MobiSys, 2024.
[28] B. Paden, M. Cap, S. Z. Yong et al., “A survey of motion planning and

control techniques for self-driving urban vehicles,” IEEE T-IV, 2016.
[29] R. Tachet, P. Santi, S. Sobolevsky et al., “Revisiting street intersections

using slot-based systems,” PLOS ONE, 2016.
[30] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for

dynamic environments,” in ICRA, 2011.
[31] M. Quigley, K. Conley, B. Gerkey et al., “Ros: an open-source robot

operating system,” in ICRA workshop on OSS, 2009.
[32] Whoenig, “Library with Search Algorithms for Task and Path Plan-

ning for Multi Robot/Agent Systems,” https://github.com/whoenig/
libMultiRobotPlanning.

[33] S. Busch, C. Koetsier, J. Axmann et al., “Lumpi: The leibniz university
multi-perspective intersection dataset,” in IV. IEEE, 2022.

[34] W. G. Najm, R. Ranganathan, G. Srinivasan et al., “Description of
light-vehicle pre-crash scenarios for safety applications based on vehicle-
to-vehicle communications,” US. NHTSA, Tech. Rep., 2013.

[35] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP, 2008.

[36] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift,
robust, and fast,” in ICRA, 2015.

[37] H.-N. Hu, Q.-Z. Cai, D. Wang et al., “Joint monocular 3d vehicle
detection and tracking,” in ICCV, 2019.

[38] I. Cvišić, I. Marković, and I. Petrović, “Soft2: Stereo visual odometry
for road vehicles based on a point-to-epipolar-line metric,” IEEE Tran.
on Robotics, 2022.

[39] S. Casas, W. Luo, and R. Urtasun, “IntentNet: Learning to Predict
Intention from Raw Sensor Data,” in CoRL. PMLR, 2018.

[40] “Average car length,” https://anewwayforward.org/average-car-length/.
[41] “Average lane width,” https://safety.fhwa.dot.gov/geometric/pubs/

mitigationstrategies/chapter3/3_lanewidth.cfm.
[42] “3-second rule for safe following distance,” https://www.travelers.com/

resources/auto/travel/3-second-rule-for-safe-following-distance.
[43] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent,

reinforcement learning for autonomous driving,” arXiv, 2016.
[44] M. Khayatian, M. Mehrabian, E. Andert et al., “A survey on intersection

management of connected autonomous vehicles,” ACM Trans. Cyber-
Phys. Syst., 2020.

[45] F. Ahmad, S. A. Mahmud, and F. Z. Yousaf, “Shortest processing time
scheduling to reduce traffic congestion in dense urban areas,” IEEE Trans.
Syst. Man Cybern. Syst., 2016.

[46] “Signal cycle lengths,” https://nacto.org/publication/urban-street-design-
guide/intersection-design-elements/traffic-signals/signal-cycle-lengths/.

[47] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle landscape—architectures, enabling technologies, applications, and
development areas,” IEEE T-ITS, 2018.

[48] H. Qiu, F. Ahmad, F. Bai et al., “Avr: Augmented vehicular reality,” in
MobiSys, 2018.

[49] X. Zhang, A. Zhang, J. Sun et al., “Emp: edge-assisted multi-vehicle
perception,” in MobiCom, 2021.

[50] Y. He, L. Ma, Z. Jiang et al., “Vi-eye: Semantic-based 3d point cloud
registration for infrastructure-assisted autonomous driving,” in MobiCom.
ACM, 2021.

[51] Y. He, C. Bian, J. Xia et al., “Vi-map: Infrastructure-assisted real-time
hd mapping for autonomous driving,” in MobiCom, 2023.

[52] F. Ahmad, H. Qiu, R. Eells et al., “Carmap: Fast 3d feature map updates
for automobiles,” in NSDI, 2020.

[53] R. Dariani and J. Schindler, “Cooperative strategical decision and
trajectory planning for automated vehicle in urban areas,” in ICVES,
2019.

[54] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated
vehicles: State of the art and future challenges,” Annual Reviews in
Control, 2018.

[55] J. Schindler, R. Dariani, M. Rondinone et al., “Dynamic and flexible
platooning in urban areas,” in AAET, 2018.

[56] D. Ravipati, K. Chour, A. Nayak et al., “Vision based localization for
infrastructure enabled autonomy,” in ITSC, 2019.

[57] S. Gopalswamy and S. Rathinam, “Infrastructure enabled autonomy: A
distributed intelligence architecture for autonomous vehicles,” in IEEE
IV, 2018.

[58] J. Zhao, H. Xu, H. Liu et al., “Detection and tracking of pedestrians and
vehicles using roadside LiDAR sensors,” Transp. Res. Part C Emerg.,
2019.

[59] J. Wu, H. Xu, and J. Zheng, “Automatic background filtering and lane
identification with roadside LiDAR data,” in ITSC, 2017.

[60] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Mach. Vis. Appl., 2014.

[61] O. Aycard, “Intersection Safety Using Lidar and Stereo Vision Sensors
on a Demonstrator Vehicle,” Transportation, 2011.

[62] R. Yue, H. Xu, J. Wu et al., “Data registration with ground points for
roadside LiDAR sensors,” Remote Sensing, 2019.

[63] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in ICRA, 1991.

[64] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in IROS, 2008.

[65] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018.

[66] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “Std: Sparse-to-dense 3d
object detector for point cloud,” in ICCV, 2019.

[67] H. Qi, C. Feng, Z. Cao, F. Zhao, and Y. Xiao, “P2b: Point-to-box network
for 3d object tracking in point clouds,” in CVPR, 2020.

[68] W. Luo, B. Yang, and R. Urtasun, “Fast and Furious: Real Time End-
to-End 3D Detection, Tracking and Motion Forecasting With a Single
Convolutional Net,” in CVPR, 2018.

[69] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robotics, 2017.

[70] A. Rosinol, M. Abate, Y. Chang et al., “Kimera: an open-source library
for real-time metric-semantic localization and mapping,” in ICRA, 2020.

72

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 01,2024 at 01:42:53 UTC from IEEE Xplore. Restrictions apply.

